Ультрафиолетовое излучение возникает при резком. Что такое ультрафиолетовое излучение – свойства, применение, защита от ультрафиолета

В действии коротковолнового излучения на живой организм наибольший интерес представляет влияние ультрафиолетовых лучей на биополимеры - белки и нуклеиновые кислоты. Молекулы биополимеров содержат кольцевые группы молекул, содержащие углерод и азот, которые интенсивно поглощают излучение с длиной волны 260...280 нм. Поглощенная энергия может мигрировать по цепи атомов в пределах молекулы без существенной потери, пока не достигнет слабых связей между атомами и не разрушит связь. В течение такого процесса, называемого фотолизом, образуются осколки молекул, оказывающие сильное действие на организм. Так, например, из аминокислоты гистидина образуется гистамин - вещество, расширяющее кровеносные капилляры и увеличивающее их проницаемость. Кроме фотолиза под действием ультрафиолетовых лучей в биополимерах происходит денатурация. При облучении светом определенной длины волны электрический заряд молекул уменьшается, они слипаются и теряют свою активность - ферментную, гормональную, антипенную и пр.

Процессы фотолиза и денатурации белков идут параллельно и независимо друг от друга. Они вызываются разными диапазонами излучения: лучи 280...302 нм вызывают главным образом фотолиз, а 250...265 нм - преимущественно денатурацию. Сочетание этих процессов определяет картину действия на клетку ультрафиолетовых лучей.

Самая чувствительная к действию ультрафиолетовых лучей функция клетки - деление. Облучение в дозе 10(-19) дж/м 2 вызывает остановку деления около 90% бактериальных клеток. Но рост и жизнедеятельность клеток при этом не прекращается. Со временем восстанавливается их деление. Чтобы вызвать гибель 90% клеток, подавление синтеза нуклеиновых кислот и белков, образование мутаций, необходимо довести дозу облучения до 10(-18) дж/м 2. Ультрафиолетовые лучи вызывают в нуклеиновых кислотах изменения, которые влияют на рост, деление, наследственность клеток, т.е. на основные проявления жизнедеятельности.

Значение механизма действия на нуклеиновую кислоту объясняется тем, что каждая молекула ДНК (дезоксирибонуклеиновой кислоты) уникальна. ДНК - это наследственная память клетки. В ее структуре зашифрована информация о строении и свойствах всех клеточных белков. Если любой белок присутствует в живой клетке в виде десятков и сотен одинаковых молекул, то ДНК хранит информацию об устройстве клетки в целом, о характере и направлении процессов обмена веществ в ней. Поэтому нарушения в структуре ДНК могут оказаться непоправимыми или привести к серьезному нарушению жизнедеятельности.

Действие ультрафиолетового излучения на кожу

Воздействие ультрафиолета на кожу заметно влияет на метаболизм нашего организма. Общеизвестно, что именно УФ-лучи инициируют процесс образования эргокальциферола (витамина Д), необходимого для всасывания кальция в кишечнике и обеспечения нормального развития костного скелета. Кроме того, ультрафиолет активно влияет на синтез мелатонина и серотонина - гормонов, отвечающих за циркадный (суточный) биологический ритм. Исследования немецких ученых показали, что при облучении УФ-лучами сыворотки крови в ней на 7 % увеличивалось содержание серотонина - "гормона бодрости", участвующего в регуляции эмоционального состояния. Его дефицит может приводить к депрессии, колебаниям настроения, сезонным функциональным расстройствам. При этом количество мелатонина, обладающего тормозящим действием на эндокринную и центральную нервную системы, снижалось на 28%. Именно таким двойным эффектом объясняется бодрящее действие весеннего солнца, поднимающего настроение и жизненный тонус.

Действие излучения на эпидермис - наружный поверхностный слой кожи позвоночных животных и человека, состоящий из многослойного плоского эпителия человека, представляет собой воспалительную реакцию называемую эритемой. Первое научное описание эритемы дал в 1889 г. А.Н. Макланов, который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины. Различают калорическую и ультрафиолетовую эритему. Калорическая эритема обусловлена воздействием видимых и инфракрасных лучей на кожу и прилива к ней крови. Она исчезает почти сразу после прекращения действия облучения.

Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они не оказывают на организм никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче длина волны излучения, тем меньше их проникающая способность. Лучи короче 310 нм не проникают глубже эпидермиса. Лучи с большей длиной волны достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Таким образом, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным образом в эпидермисе. Основное количество ультрафиолетовых лучей поглощается в ростковом (основном) слое эпидермиса. Процессы фотолиза и денатурации приводят к гибели шиловидных клеток зародышевого слоя. Активные продукты фотолиза белков вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы.

Продукты фотолиза, распространяясь по кровеносному руслу, раздражают также нервные окончания кожи и через центральную нервную систему рефлекторно воздействуют на все органы. Установлено, что в нерве, отходящем от облученного участка кожи, частота электрических импульсов повышается. Эритема рассматривается как сложный рефлекс, в возникновении которого участвуют активные продукты фотолиза. Степень выраженности эритемы и возможность ее образования зависит от состояния нервной системы. На пораженных участках кожи, при обморожении, воспалении нервов эритема либо вовсе не появляется, либо выражена очень слабо, несмотря на действие ультрафиолетовых лучей. Угнетает образование эритемы сон, алкоголь, физическое и умственное утомление.Н. Финзен (Дания) впервые применил ультрафиолетовое излучение для лечения ряда болезней в 1899 г. В настоящее время подробно изучены проявления действия разных участков ультрафиолетового излучения на организм. Из ультрафиолетовых лучей, содержащихся в солнечном свете, эритему вызывают лучи с длиной волны 297 нм. К лучам с большей или меньшей длиной волны эритемная чувствительность кожи снижается. С помощью искусственных источников излучения эритему удалось вызвать лучами диапазона 250...255 нм. Лучи с длиной волны 255 нм дает резонансная линия излучения паров ртути, используемых в ртутно-кварцевых лампах.

Таким образом, кривая эритемной чувствительности кожи имеет два максимума. Впадина между двумя максимумами обеспечивается экранирующим действием ороговевшего слоя кожи.

Ультрафиолетовое излучение поставляет энергию для фотохимических реакций в организме. В нормальных условиях солнечный свет вызывает образование небольшого количества активных продуктов фотолиза, которые оказывают на организм благотворное действие. Ультрафиолетовые лучи в дозах, вызывающих образование эритемы, усиливают работу кроветворных органов, ретикуло-эндотелиальную систему (Физиологическая система соединительной ткани, вырабатывающая антитела разрушающие чужеродные организму тела и микробы), барьерные свойства кожного покрова, устраняют аллергию.

Под действием ультрафиолетового излучения в коже человека из стероидных веществ образуется жирорастворимый витамин D. В отличие от других витаминов он может поступать в организм не только с пищей, но и образовываться в нем из провитаминов. Под влиянием ультрафиолетовых лучей с длиной волны 280...313 нм провитамины, содержащиеся в кожной смазке выделяемой сальными железами, превращаются в витамин D и всасываются в организм.

Физиологическая роль витамина D заключается в том, что он способствует усвоению кальция. Кальций входит в состав костей, участвует в свертывании крови, уплотняет клеточные и тканевые мембраны, регулирует активность ферментов. Болезнь, возникающая при недостатке витамина D у детей первых лет жизни, которых заботливые родители прячут от Солнца, называется рахитом.

Кроме естественных источников витамина D используют и искусственные, облучая провитамины ультрафиолетовыми лучами. При использовании искусственных источников ультрафиолетового излучения следует помнить, что лучи короче 270 нм разрушают витамин D. Поэтому с помощью фильтров в световом потоке ультрафиолетовых ламп подавляется коротковолновая часть спектра. Солнечное голодание проявляется в раздражительности, бессоннице, быстрой утомляемости человека. В больших городах, где воздух загрязнен пылью, ультрафиолетовые лучи вызывающие эритему почти не достигают поверхности Земли. Длительная работа в шахтах, машинных отделениях и закрытых заводских цехах, труд ночью, а сон в дневные часы приводят к световому голоданию. Световому голоданию способствует оконное стекло, которое поглощает 90...95% ультрафиолетовых лучей и не пропускает лучи в диапазоне 310...340 нм. Окраска стен также имеет существенное значение. Например, желтая окраска полностью поглощает ультрафиолетовые лучи. Недостаток света, особенно ультрафиолетового излучения, ощущают люди, домашние животные, птицы и комнатные растения в осенний, зимний и весенний периоды. Восполнить недостаток ультрафиолетовых лучей позволяют лампы, которые наряду с видимым светом излучают ультрафиолетовые лучи в диапазоне длин волн 300...340 нм. Следует иметь в виду, что ошибки при назначении дозы облучения, невнимание к таким вопросам, как спектральный состав ультрафиолетовых ламп, направление излучения и высота размещения ламп, длительность горения ламп, могут вместо пользы принести вред.

Наверняка многие знают, что ультрафиолет способен устроить для вашей кожи двоякую ситуацию. Он может ровно нанести на тело то, что мы называем загаром (иными словами, оказать воздействие на меланин под нашей кожей), а может и нанести серьёзный ожог.

Ультрафиолетовый свет – мощнейшее излучение от главной и единственной нашей системы – Солнечной, сейчас это знает каждый школьник. То, что мы видим как солнечные лучи на самом деле просто свет от звезды, долетающий до нас сквозь невероятное расстояние.

Ультрафиолетовые невидимые для нас волны просто остаются за пределами спектра, который доступен человеческому глазу.

Что такое ультрафиолет?

Это всего лишь остатки энергии, которая долетает к нам от Солнца сквозь расстояние до Земли (а это 149 600 000 км) и преодолевает главную защиту планеты – озоновый слой.

То, что мы можем чувствовать на своей коже – крохотные частицы того невероятного количества тепла, которое звезда выделяет ежесекундно. Про озоновый слой вы могли слышать из экологических телепрограмм и прочего подобного материала и не зря.

Если бы озонового слоя не существовало, всё живое на Земле практически моментально умерло бы от мощнейшего потока радиации. Да, ультрафиолет радиоактивен и в больших дозах может нанести вред вплоть до летального исхода.

Ультрафиолетовый диапазон излучения находится между видимыми нам лучами (именно фиолетовой границей нашего светового зрения) и рентгеновским излучением.

Именно поэтому этот тип электромагнитных лучей получил своё название – ultraviolet, от лат. ultra (сверх чего-то, за пределами чего-то) и violet (фиолетовый с англ.).

Ультрафиолетовый свет обладает также и разной длиной волны – от 400 до 100 нм. Длина волны важна – она влияет на живые организмы с силой, прямо пропорциональной дальности.

Длина волны усф в 280-200 нм оказывает самое сильное влияние на живые организмы, например, ткани органов. На микроорганизмы действует как бактерицидное излучение, полностью уничтожая.

Кто открыл ультрафиолет?


Подозрения о том, что невидимые спектры света существуют, бродили среди величайших умов человечества очень давно. Учёные того времени не могли объяснить явление, но строили очень многообещающие догадки, которые и подвели современных учёных к открытию в чистом виде.

Открытие произошло вскоре после обнаружения человечеством инфракрасного излучения. Примерно в это время немецкий физик Иоганн Вильгельм Риттер начал проводить исследования в области противоположной части спектра, с лучами за пределом фиолетового.

Девятнадцатый век только-только начался, люди ещё очень многое не знали про свет и то, что он из себя представляет, не говоря уже о том, что такое ультрафиолетовое излучение.

Всё познавалось путём эксперимента, редкими контактами с коллегами из других стран и долгим путём проб и ошибок. Таким же путём пошёл и Риттер.

Он задумал интересный эксперимент, который осуществил в своих исследованиях с помощью хлорида серебра. Облучая его разными частями спектра, он заметил, что окисление вещества происходит с разной скоростью.

Каждый участок спектра оказывал разное влияние, но один показатель очень явно выделялся среди прочих – быстрее всего серебро темнело за пределами фиолетовой части, а точнее перед ней.

Несмотря на то, что даже знания про диапазон длин волн тогда были довольно размыты, учёные почерпнули из этого вывод, изменивший физику навсегда.

В результате долгих дискуссий и обсуждений, вывод был дан общественности довольно чётко.

Учёные сошлись на том, что свет можно поделить на три условные, строго отдельные части:

  1. видимый свет (виден человеческому глазу);
  2. инфракрасное излучение (невидимые лучи, дающие эффект тепла и отвечающие за окисление);
  3. ультрафиолетовые лучи (восстанавливающие).

Разумеется, тогда никто не мог знать влияние ультрафиолетовой волны на человеческую кожу, а также все сферы, в которых человек будет использовать это излучение в будущем.

Тем не менее, исследования продолжались и продолжаются в наши дни, а ультрафиолет постоянно удивляет учёных какими-то новыми свойствами и возможностями его применения.

Польза ультрафиолета для человека


С каждым годом человечество обнаруживало всё новые и новые способы использовать это удивительное излучение.

Одним из самых известных и знакомых каждому, кто имел несчастье длительное время лежать в больнице, является кварцевание – облучение больничного помещения ультрафиолетом с целью полной стерилизации комнаты от микроорганизмов.

Хоть метод и давний, но до сих пор применяется — многие больничные палаты до сих пор оборудованы специальными лампами, излучающими ультрафиолетовые лучи.

Все люди, включая персонал, покидают помещение на время кварцевания, так как лучи ультрафиолета достаточной мощности для бактерицидного эффекта обязательно навредят человеку.

Оказавшийся даже ненадолго под эффектом такой лампы человек почувствует гул в ушах, повышенное давление, его будут преследовать специфический запах и головная боль.

Ультрафиолетовое (уфс) излучение используется также и в обеззараживании воды. Наряду с хлором, который используется больше в промышленных целях, а не для воды, которая потом должна попасть в дома людей, ультрафиолет не только помогает очистить воду, а и устраняет последствия хлорирования и озонирования воды – чрезмерную жёсткость, химический осадок.

Наиболее популярен при очистке воды для промышленных нужд, для заводов и бассейнов – спектр ультрафиолетового излучения таков, что вреда человеку такая очистка не нанесёт.

Тот же хлор гораздо опаснее – если, например, в бассейне не рассчитать пропорции вещества к воде, хлорка легко может нанести вам слабые, но ощутимые мелкие ожоги кожного покрова.

«Отличился» ультрафиолет и в сфере анализа окружающей среды. Его, как и любое излучение, можно использовать для исследования веществ. Особенно эффект виден на минералах – при облучении горные породы и камни начинают светиться, причём каждый по-разному.

Последствий такого облучения нет, а особенная реакция каждого минерала на ультрафиолетовые лучи очень пригодилась геологам. Сейчас, просвечивая насквозь целые пласты горных пород, можно с почти абсолютной уверенностью «узнать» тот или иной камень.

Рентгеновские и также используются геологами для таких анализов, но с удивительной эффективностью ультрафиолета соперничать непросто.

Ну и, пожалуй, самая известная сейчас сфера применения таких лучей. Это, как ни странно, сфера косметологии.

Человечество давно задумалось – если ультрафиолет в солнечных лучах (а именно Солнце – основной источник космического ультрафиолета для нас) вызывает загар на человеческой коже.

То почему бы не создать искусственный источник и получать такой эффект круглый год, а не только в пляжные сезоны, когда принятие солнечных ванн возможно?

Действие уфс на кожу крайне простое и механическое – лучи действуют на наш человеческий пигмент (меланин), который просто защищается, темнея в процессе – это объясняет заодно и причину исчезновения загара со временем.

Сделать искусственный источник у нас получилось – сейчас это сверхсовременные солярии с щадящими лампами. Практически полностью безопасные для людей с любым типом кожи, а ультрафиолет в них используется легко и без всяких опасений.

Никто не застрахован от того, чтобы нанести слишком сильный загар или испортить ровный тон, но получить ожоги в салоне солярия не выйдет – техника безопасности не позволит.

Опасность ультрафиолета для кожи


Кстати, о безопасности. В малых количествах ультрафиолет под открытым небом не может причинить вреда серьёзнее, чем обгоревшая кожа, даже если вы будете находиться в воде.

Но мы говорим о стандартной для человека дозе облучения, а есть люди, вольно или невольно получающие избыток ультрафиолетовых лучей гораздо чаще, чем несколько раз в год.

Это грозит, к сожалению, не только перманентным загаром. Лучи действуют на кожу не лучшим образом, иногда образуя или усиливая уже имеющуюся меланому – проще говоря, рак кожи.

Меланомы бывают нескольких видов, но все они относятся к злокачественным опухолям. Причём неважно, где вы загораете – как космический солнечный, так и искусственный ультрафиолет, который применяется в соляриях, подействует одинаково.

Риск получить меланому невелик, но при наличии других раковых заболеваний ранее, ультрафиолетовое излучение увеличивает шанс на рецидив, что доказано.

Меланома – худший из вариантов и шансы на неё малы. Но злоупотребляя солнечными ваннами, вы получите ещё несколько неприятных сюрпризов.

Это всем нам известные с детства ожоги кожи, после которых верхний слой эпидермиса сползает клочьями. Большую вероятность преждевременного старения кожи из-за того же меланина, который попросту не выдержит такой нагрузки.

И если от ожогов вы избавитесь, так как везде уже используют специальные крема для лечения и профилактики солнечных ожогов, то обратить старение вспять вряд ли выйдет.

Ещё одно гениальное человеческое изобретение – солнечные очки, были придуманы также в попытках борьбы с излишками ультрафиолета, ведь для человеческого глаза эти лучи тоже очень вредны.

Вредоносное действие будет того же типа – ожог, но только главного барьера глаза, сетчатки. Это тяжёлая травма, целостность сетчатки очень трудно и дорого восстанавливать.

Что примечательно, при замене сетчатки некоторые пациенты начинали буквально видеть ультрафиолетовое излучение в виде слабого лилового свечения, и в новых моделях стремительно развивающихся имплантатов такой ошибки уже нет.

Защитить глаз от лучей можно только прямой «заслонкой», роль которой и выполняет стекло очков – его главная функция состоит именно в этом, а не в улучшении вашей видимости в солнечный день.

Удивительно, но из своего врага мы медленно, но верно превратили ультрафиолет в условного друга. Мы используем для решения бытовых проблем излучение, которое при любой более-менее серьёзной бреши в озоновом слое может с лёгкостью стать причиной апокалипсиса.

Мы научились обращаться с ним с осторожностью и знаем его основные тайны, но это совершенно не значит, что он для нас более не опасен.

Прежде всего, всё зависит от самих людей – пока технологии не развиты настолько, чтобы полностью избавлять нас от последствий космических излучений, следует быть крайне осторожными и остерегаться ожогов, особенно с такими последствиями.

Солнце – мощный источник тепла и света. Без него не может быть жизни на планете. От солнца исходят лучи, которые не видны невооруженным глазом. Узнаем, какие свойства имеет ультрафиолетовое излучение, его влиянии на организм и возможном вреде.

Солнечный спектр имеет инфракрасную, видимую и ультрафиолетовую части. УФ оказывает и положительное, и отрицательное действие на человека. Его используют в разных сферах жизнедеятельности. Широкое применение отмечается в медицине, ультрафиолетовое излучение имеет свойство изменять биологическую структуру клеток, оказывая воздействие на организм.

Источники облучения

Главный источник ультрафиолетовых лучей – солнце. Также их получают при помощи специальных лампочек:

  1. Ртутно-кварцевые высокого давления.
  2. Витальные люминесцентные.
  3. Озонные и кварцевые бактерицидные.

В настоящее время человечеству известны лишь некоторые виды бактерий, способные существовать без ультрафиолета. Для остальных живых клеток его отсутствие приведет к смерти.

Какого же влияние ультрафиолетового излучения на организм человека?

Положительное действие

На сегодняшний день УФ широко используется в медицине. Он обладает успокаивающим, болеутоляющим, антирахитическим и антиспастическим воздействием. Положительное влияние ультрафиолетовых лучей на организм человека:

  • поступление витамина D, он нужен для усвоения кальция;
  • улучшение обмена веществ, так как активизируются ферменты;
  • снижение нервного перенапряжения;
  • повышение выработки эндорфинов;
  • расширение сосудов и нормализация циркуляции крови;
  • ускорение регенерации.

Ультрафиолет для человека полезен также тем, что он воздействует на иммунобиологическую активность, способствует активизации защитных функций организма против различных инфекций. В определенной концентрации излучение вызывает выработку антител, влияющих на возбудителей заболеваний.

Отрицательное влияние

Вред ультрафиолетовой лампы на организм человека часто превышает его полезные свойства. Если ее использование в лечебных целях выполнено неправильно, не были соблюдены меры безопасности, возможна передозировка, характеризующаяся следующими симптомами:

  1. Слабость.
  2. Апатия.
  3. Снижение аппетита.
  4. Проблемы с памятью.
  5. Учащенное сердцебиение.

Продолжительное пребывание на солнце вредно для кожи, глаз и иммунитета. Последствия чрезмерного загара, такие как ожоги, дерматические и аллергические высыпания исчезают через несколько суток. Ультрафиолетовая радиация медленно скапливается в организме и становится причиной опасных заболеваний.

Воздействие УФ на кожу может стать причиной эритемы. Сосуды расширяются, что характеризуется гиперемией и отеком. Накапливающиеся на теле гистамин и витамин D попадают в кровь, это способствует изменениям в организме.

Стадия развития эритемы зависит от:

  • диапазона УФ-лучей;
  • дозы излучения;
  • индивидуальной чувствительности.

Чрезмерное облучение вызывает на коже ожог с образованием пузыря и последующим схождением эпителия.

Но вред ультрафиолета не ограничивается ожогами, его нерациональное применение может спровоцировать патологические изменения в организме.

Действие УФ на кожу

К красивому загорелому телу стремится большинство девушек. Однако кожа приобретает темный цвет под действием меланина, так организм защищается от дальнейшего излучения. Но он не убережет от более серьезного воздействия облучения:

  1. Фотосенсибилизация – высокая чувствительность к ультрафиолету. Минимальное его действие может спровоцировать жжение, зуд или ожог. Это в основном связано с применением лекарственных препаратов, косметических средств либо определенных продуктов питания.
  2. Старение – УФ-лучи проходят в глубокие слои кожи, разрушают коллагеновые волокна, теряется эластичность и появляются морщины.
  3. Меланома – это рак кожи, который образуется в результате частого и продолжительного пребывания на солнце. Чрезмерная доза ультрафиолета вызывает развитие злокачественных новообразований на теле.
  4. Базальноклеточная и чешуйчатая карцинома – это раковое образование на теле, при котором необходимо устранение пораженных участков хирургическим путем. Часто данный недуг встречается у людей, работа которых предполагает долгое пребывание на солнце.

Любой кожный дерматит, вызванный УФ-лучами может стать причиной образования онкологических заболеваний кожи.

Влияние УФ на глаза

Ультрафиолет также может отрицательно воздействовать на глаза. В результате его влияния возможно развитие следующих заболеваний:

  • Фотоофтальмия и электроофтальмия. Характеризуется краснотой и припухлостью глаз, слезотечением, светобоязнью. Появляется у тех, кто часто находятся на ярком солнце в снежную погоду без солнцезащитных очков или у сварщиков, не соблюдающих правила безопасности.
  • Катаракта – помутнение хрусталика. Это заболевание в основном появляется к старости. Оно развивается в результате действия солнечных лучей на глаза, которое накапливается на протяжении жизни.
  • Птеригиум – разрастание конъюнктивы глаза.

Также возможны некоторые виды раковых образований на глазах и веках.

Как действует УФ на иммунную систему?

Как влияет облучение на иммунитет? В определенной дозе УФ-лучи повышают защитные функции организма, но их чрезмерное действие ослабляет иммунную систему.

Радиация излучения изменяет защитные клетки, и они теряют свою способность бороться с различными вирусами, раковыми клетками.

Защита кожи

Чтобы защититься от солнечных лучей, необходимо следовать определенным правилам:

  1. Находиться на открытом солнце нужно умеренно, небольшой загар оказывает фотозащитный эффект.
  2. Необходимо обогатить рацион питания антиоксидантами и витаминами C и E.
  3. Следует всегда пользоваться солнцезащитным кремом. При этом нужно выбирать средство с высоким уровнем защиты.
  4. Использовать ультрафиолет в лечебных целях разрешается исключительно под контролем специалиста.
  5. Тем, кто работает с источниками УФ, рекомендуется защищать себя маской. Это нужно при применении бактерицидной лампы, которая опасна для глаз.
  6. Любителям ровного загара, не следует слишком часто посещать солярий.

Чтобы защитить себя от излучения также можно использовать специальную одежду.

Противопоказания

Противопоказано подвергаться ультрафиолету следующим людям:

  • тем, кто имеет слишком светлую и чувствительную кожу;
  • при активной форме туберкулеза;
  • детям;
  • при острых воспалительных или онкологических заболеваниях;
  • альбиносам;
  • во время II и III стадии гипертонической болезни;
  • при большом количестве родинок;
  • тем, кто страдает системными или гинекологическими недугами;
  • при продолжительном приеме определенных лекарственных препаратов;
  • при наследственной предрасположенности к онкологическим заболеваниям кожи.

Инфракрасное излучение

Еще одна часть солнечного спектра – инфракрасное излучение, оказывающее тепловое действие. Оно используется в современной сауне.

– это маленькое деревянное помещение со встроенными инфракрасными излучателями. Под действием их волн прогревается человеческое тело.

Воздух в инфракрасной сауне не повышается свыше 60 градусов. Однако лучи прогревают тело до 4 см, когда в традиционной бане тепло проникает всего на 5 мм.

Это происходит, так как длина инфракрасных волн имеет ту же длину, что и тепловые волны, идущие от человека. Организм принимает их как свои и не сопротивляется проникновению. Температура человеческого тела поднимается до 38,5 градусов. Благодаря этому погибают вирусы и опасные микроорганизмы. Инфракрасная сауна оказывает лечебное, омолаживающее, и профилактическое действие. Она показана для любого возраста.

Перед посещением такой сауны необходимо проконсультироваться со специалистом, а также следовать технике безопасности нахождения в помещении с инфракрасными излучателями.

Видео: ультрафиолет.

УФ в медицине

В медицине существует термин «ультрафиолетовое голодание». Это происходит, когда организму не хватает солнечного света. Чтобы от этого не возникало никаких патологий, применяют искусственные источники ультрафиолета. Они помогают бороться с зимней нехваткой витамина D и поднять иммунитет.

Также такое излучение используется при лечении суставов, аллергических и дерматологических болезней.

К тому же УФ обладает следующими лечебными свойствами:

  1. Нормализует работу щитовидной железы.
  2. Улучшает функцию дыхательной и эндокринной систем.
  3. Повышает гемоглобин.
  4. Дезинфицирует помещение и медицинские инструменты.
  5. Снижает уровень сахара.
  6. Помогает при лечении гнойных ран.

Необходимо учитывать, что ультрафиолетовая лампа – это не всегда польза, возможен и большой вред.

Чтобы УФ-излучение оказывало полезный эффект на организм, следует использовать его правильно, соблюдать технику безопасности и не превышать время пребывания на солнце. Чрезмерное превышение дозы облучения опасно для здоровья и жизни человека.

Спектр лучей, видимых глазом человека, не имеет резкой, четко определенной границы. Верхней границей видимого спектра одни исследователи называют 400 нм, другие 380, третьи сдвигают ее до 350...320 нм. Это объясняется различной световой чувствительностью зрения и указывает на наличие лучей не видимых глазом.
В 1801 г. И. Риттер (Германия) и У. Уола-стон (Англия) используя фотопластинку доказали наличие ультрафиолетовых лучей. За фиолетовой границей спектра она чернеет быстрее, чем под влиянием видимых лучей. Поскольку почернение пластинки происходит в результате фотохимической реакции, ученые пришли к выводу, что ультрафиолетовые лучи весьма активны.
Ультрафиолетовые лучи охватывают широкий диапазон излучений: 400...20 нм. Область излучения 180... 127 нм называется вакуумной. Посредством искусственных источников (ртутно-кварцевых, водородных и дуговых ламп), дающих как линейчатый, так и непрерывный спектр, получают ультрафиолетовые лучи с длиной волны до 180 нм. В 1914 г. Лайман исследовал диапазон до 50 нм.
Исследователи обнаружили тот факт, что спектр ультрафиолетовых лучей Солнца, достигающих земной поверхности, очень узок - 400...290 нм. Неужели солнце не излучает свет с длиной волны короче 290 нм?
Ответ на этот вопрос нашел А. Корню (Франция). Он установил, что озон поглощает ультрафиолетовые лучи короче 295 нм, после чего выдвинул предположение: Солнце излучает коротковолновые ультрафиолетовое излучение, под его действием молекулы кислорода распадаются на отдельные атомы, образуя молекулы озона, поэтому в верхних слоях атмосферы озон должен покрывать землю защитным экраном. Гипотеза Корню получила подтверждение тогда, когда люди поднялись в верхние слои атмосферы. Таким образом, в земных условиях спектр солнца ограничен пропусканием озонового слоя.
Количество ультрафиолетовых лучей, достигающих земной поверхности, зависит от высоты Солнца над горизонтом. В течение периода нормального освещения освещенность изменяется на 20%, тогда как количество ультрафиолетовых лучей достигающих земной поверхности уменьшается в 20 раз.
Специальными экспериментами установлено, что при подъеме вверх на каждые 100 м интенсивность ультрафиолетового излучения возрастает на 3...4%. На долю рассеянного ультрафиолета в летний полдень приходится 45...70% излучения, а достигающего земной поверхности - 30...55%. В пасмурные дни, когда диск Солнца закрыт тучами, поверхности Земли достигает главным образом рассеянная радиация. Поэтому можно хорошо загореть не только под прямыми лучами солнца, но и в тени, и в пасмурные дни.
Когда Солнце стоит в зените, в экваториальной области поверхности земли достигают лучи длиной 290...289 нм. В средних широтах коротковолновая граница, в летние месяцы, составляет примерно 297 нм. В период эффективного освещения верхняя граница спектра составляет порядка 300 нм. За полярным кругом земной поверхности достигают лучи с длиной волны 350...380 нм.

Влияние ультрафиолетового излучения на биосферу

Выше диапазона вакуумной радиации ультрафиолетовые лучи легко поглощаются водой, воздухом, стеклом, кварцем и не достигают биосферы Земли. В диапазоне 400... 180 нм влияние на живые организмы лучей различной длины волны не одинакова. Наиболее богатые энергией коротковолновые лучи сыграли существенную роль в образовании первых сложных органических соединений на Земле. Однако эти лучи способствуют не только образованию, но и распаду органических веществ. Поэтому прогресс жизненных форм на Земле наступил лишь после того, когда благодаря деятельности зеленых растений атмосфера обогатилась кислородом и, под действием ультрафиолетовых лучей, образовался защитный озоновый слой.
Для нас представляют интерес ультрафиолетовое излучение Солнца и искусственных источников ультрафиолетового излучения в диапазоне 400...180 нм. Внутри этого диапазона выделены три области:

А - 400...320 нм;
В - 320...275 нм;
С - 275...180нм.

В действии каждого из этих диапазонов на живой организм есть существенные различия. Ультрафиолетовые лучи действуют на вещество, в том числе и живое, по тем же законам, что и видимый свет. Часть поглощаемой энергии превращается в тепло, но тепловое действие ультрафиолетовых лучей не оказывает на организм заметного влияния. Другой способ передачи энергии - люминесценция.
Фотохимические реакции под действием ультрафиолетовых лучей проходят наиболее интенсивно. Энергия фотонов ультрафиолетового света очень велика, поэтому при их поглощении молекула ионизируется и распадается на части. Иногда фотон выбивает электрон за пределы атома. Чаще всего происходит возбуждение атомов и молекул. При поглощении одного кванта света с длиной волны 254 нм энергия молекулы возрастает до уровня, соответствующего энергии теплового движения при температуре 38000°С.
Основная часть солнечной энергии достигает земли в качестве видимого света и инфракрасного излучения и лишь незначительная часть - в виде ультрафиолета. Максимальных значений поток УФ достигает в середине лета на Южном полушарии (Земля на 5% ближе к Солнцу) и 50% от суточного количества УФ поступает в течение 4-х полуденных часов. Diffey установил, что для географических широт с температурой 20-60° человек, загорающий с 10:30 до 11:30 и затем с 16:30 до заката, получит только 19% от суточной дозы УФ. В полдень, интенсивность УФ (300 нм) в 10 раз выше, чем тремя часами раньше или позже: незагорелому человеку достаточно 25 минут для получения легкого загара в полдень, однако для достижения этого же эффекта после 15:00, ему понадобится лежать на солнце не менее 2-х часов.
Ультрафиолетовый спектр в свою очередь разделяют на ультрафиолет-А (UV-A) с длиной волны 315-400 nm, ультрафиолет-В (UV-B) -280-315 nm и ультрафиолет-С (UV-С)- 100-280 nm которые отличаются по проникающей способности и биологическому воздействию на организм.
UV-A не задерживается озоновым слоем, проходит сквозь стекло и роговой слой кожи. Поток UV-A (среднее значение в полдень) в два раза выше на уровне Полярного Круга, чем на экваторе, так что абсолютное его значение больше в высоких широтах. Не отмечается и существенных колебаний в интенсивности UV-A в разные времена года. За счет поглощения, отражения и рассеивания при прохождении через эпидермис, в дерму проникает только 20-30% UV-A и около 1% от общей его энергии достигает подкожной клетчатки.
Большая часть UV-B поглощается озоновым слоем, который "прозрачен" для UV-A. Так что доля UV-B во всей энергии ультрафиолетового излучения в летний полдень составляет всего около 3%. Он практически не проникает сквозь стекло, на 70% отражается роговым слоем, на 20% ослабляется при прохождении через эпидермис - в дерму проникает менее 10%.
Однако длительное время считалось, что доля UV-В в повреждающем действии ультрафиолета составляет 80%, поскольку именно этот спектр отвечает за возникновение эритемы солнечного ожога.
Необходимо учитывать и тот факт, что UV-В сильнее (меньшая длина волны) чем UV-А рассеивается при прохождении через атмосферу, что приводит и к изменению соотношения между этими фракциями с увеличением географической широты (в северных странах) и временем суток.
UV-С (200-280 нм) поглощается озоновым слоем. В случае использования искусственного источника ультрафиолета, он задерживается эпидермисом и не проникает в дерму.

Действие ультрафиолетового излучения на клетку

В действии коротковолнового излучения на живой организм наибольший интерес представляет влияние ультрафиолетовых лучей на биополимеры - белки и нуклеиновые кислоты. Молекулы биополимеров содержат кольцевые группы молекул, содержащие углерод и азот, которые интенсивно поглощают излучение с длиной волны 260...280 нм. Поглощенная энергия может мигрировать по цепи атомов в пределах молекулы без существенной потери, пока не достигнет слабых связей между атомами и не разрушит связь. В течение такого процесса, называемого фотолизом, образуются осколки молекул, оказывающие сильное действие на организм. Так, например, из аминокислоты гистидина образуется гистамин - вещество, расширяющее кровеносные капилляры и увеличивающее их проницаемость. Кроме фотолиза под действием ультрафиолетовых лучей в биополимерах происходит денатурация. При облучении светом определенной длины волны электрический заряд молекул уменьшается, они слипаются и теряют свою активность - ферментную, гормональную, антигенную и пр.
Процессы фотолиза и денатурации белков идут параллельно и независимо друг от друга. Они вызываются разными диапазонами излучения: лучи 280...302 нм вызывают главным образом фотолиз, а 250...265 нм - преимущественно денатурацию. Сочетание этих процессов определяет картину действия на клетку ультрафиолетовых лучей.
Самая чувствительная к действию ультрафиолетовых лучей функция клетки - деление. Облучение в дозе 10(-19) дж/м2 вызывает остановку деления около 90% бактериальных клеток. Но рост и жизнедеятельность клеток при этом не прекращается. Со временем восстанавливается их деление. Чтобы вызвать гибель 90% клеток, подавление синтеза нуклеиновых кислот и белков, образование мутаций, необходимо довести дозу облучения до 10(-18) дж/м2. Ультрафиолетовые лучи вызывают в нуклеиновых кислотах изменения, которые влияют на рост, деление, наследственность клеток, т.е. на основные проявления жизнедеятельности.
Значение механизма действия на нуклеиновую кислоту объясняется тем, что каждая молекула ДНК (дезоксирибонуклеиновой кислоты) уникальна. ДНК - это наследственная память клетки. В ее структуре зашифрована информация о строении и свойствах всех клеточных белков. Если любой белок присутствует в живой клетке в виде десятков и сотен одинаковых молекул, то ДНК хранит информацию об устройстве клетки в целом, о характере и направлении процессов обмена веществ в ней. Поэтому нарушения в структуре ДНК могут оказаться непоправимыми или привести к серьезному нарушению жизнедеятельности.

Действие ультрафиолетового излучения на кожу

Воздействие ультрафиолета на кожу заметно влияет на метаболизм нашего организма. Общеизвестно, что именно УФ-лучи инициируют процесс образования эргокальциферола (витамина Д), необходимого для всасывания кальция в кишечнике и обеспечения нормального развития костного скелета. Кроме того, ультрафиолет активно влияет на синтез мелатонина и серотонина - гормонов, отвечающих за циркадный (суточный) биологический ритм. Исследования немецких ученых показали, что при облучении УФ-лучами сыворотки крови в ней на 7 % увеличивалось содержание серотонина - "гормона бодрости", участвующего в регуляции эмоционального состояния. Его дефицит может приводить к депрессии, колебаниям настроения, сезонным функциональным расстройствам. При этом количество мелатонина, обладающего тормозящим действием на эндокринную и центральную нервную системы, снижалось на 28%. Именно таким двойным эффектом объясняется бодрящее действие весеннего солнца, поднимающего настроение и жизненный тонус.
Действие излучения на эпидермис - наружный поверхностный слой кожи позвоночных животных и человека, состоящий из многослойного плоского эпителия человека, представляет собой воспалительную реакцию называемую эритемой. Первое научное описание эритемы дал в 1889 г. А.Н. Макла-нов (Россия), который изучил также действие ультрафиолетовых лучей на глаз (фотоофтальмию) и установил, что в основе их лежат общие причины.
Различают калорическую и ультрафиолетовую эритему. Калорическая эритема обусловлена воздействием видимых и инфракрасных лучей на кожу и прилива к ней крови. Она исчезает почти сразу после прекращения действия облучения.
После прекращения воздействия УФ-облучения, через 2..8 часов появляется покраснение кожи (ультрафиолетовая эритема) одновременно с ощущением жжения. Эритема появляется после скрытого периода, в пределах облученного участка кожи, и сменяется загаром и шелушением. Длительность эритемы имеет продолжительность от 10... 12 часов до 3...4 дней. Покрасневшая кожа горяча на ощупь, чуть болезненна и кажется набухшей, слегка отечной.
По существу эритема представляет собой воспалительную реакцию, ожог кожи. Это особое, асептическое (Асептический - безгнилостный) воспаление. Если доза облучения слишком велика или кожа особенно чувствительна к ним, отечная жидкость, накапливаясь, отслаивает местами наружный покров кожи, образует пузыри. В тяжелых случаях появляются участки некроза (омертвения) эпидермиса. Через несколько дней после исчезновения эритемы кожа темнеет и начинает шелушиться. По мере шелушения слущивается часть клеток, содержащих меланин (Меланин - основной пигмент тела человека; придает цвет коже, волосам, радужной оболочке глаза. Он содержится и в пигментном слое сетчатки глаза, участвует в восприятии света), загар бледнеет. Толщина кожного покрова человека варьирует в зависимости от пола, возраста (у детей и стариков - тоньше) и локализации - в среднем 1..2 мм. Его назначение - защитить организм от повреждений, колебаний температуры, давления.
Основной слой эпидермиса прилегает к собственно коже (дерме), в которой проходят кровеносные сосуды и нервы. В основном слое идет непрерывный процесс деления клеток; более старые вытесняются наружу молодыми клетками и отмирают. Пласты мертвых и отмирающих клеток образуют наружный роговой слой эпидермиса толщиной 0,07...2,5 мм (На ладонях и подошвах, главным образом за счет рогового слоя, эпидермис толще, чем на других участках тела), который непрерывно слущивается снаружи и восстанавливается изнутри.
Если падающие на кожу лучи поглощаются мертвыми клетками рогового слоя, они не оказывают на организм никакого влияния. Эффект облучения зависит от проникающей способности лучей и от толщины рогового слоя. Чем короче длина волны излучения, тем меньше их проникающая способность. Лучи короче 310 нм не проникают глубже эпидермиса. Лучи с большей длиной волны достигают сосочкового слоя дермы, в котором проходят кровеносные сосуды. Таким образом, взаимодействие ультрафиолетовых лучей с веществом происходит исключительно в коже, главным образом в эпидермисе.
Основное количество ультрафиолетовых лучей поглощается в ростковом (основном) слое эпидермиса. Процессы фотолиза и денатурации приводят к гибели шиловидных клеток зародышевого слоя. Активные продукты фотолиза белков вызывают расширение сосудов, отек кожи, выход лейкоцитов и другие типичные признаки эритемы.
Продукты фотолиза, распространяясь по кровеносному руслу, раздражают также нервные окончания кожи и через центральную нервную систему рефлекторно воздействуют на все органы. Установлено, что в нерве, отходящем от облученного участка кожи, частота электрических импульсов повышается.
Эритема рассматривается как сложный рефлекс, в возникновении которого участвуют активные продукты фотолиза. Степень выраженности эритемы и возможность ее образования зависит от состояния нервной системы. На пораженных участках кожи, при обморожении, воспалении нервов эритема либо вовсе не появляется, либо выражена очень слабо, несмотря на действие ультрафиолетовых лучей. Угнетает образование эритемы сон, алкоголь, физическое и умственное утомление.
Н. Финзен (Дания) впервые применил ультрафиолетовое излучение для лечения ряда болезней в 1899 г. В настоящее время подробно изучены проявления действия разных участков ультрафиолетового излучения на организм. Из ультрафиолетовых лучей, содержащихся в солнечном свете, эритему вызывают лучи с длиной волны 297 нм. К лучам с большей или меньшей длиной волны эритемная чувствительность кожи снижается.
С помощью искусственных источников излучения эритему удалось вызвать лучами диапазона 250...255 нм. Лучи с длиной волны 255 нм дает резонансная линия излучения паров ртути, используемых в ртутно-кварцевых лампах.
Таким образом, кривая эритемной чувствительности кожи имеет два максимума. Впадина между двумя максимумами обеспечивается экранирующим действием ороговевшего слоя кожи.

Защитные функции организма

В естественных условиях вслед за эритемой развивается пигментация кожи - загар. Спектральный максимум пигментации (340 нм) не совпадает ни с одним из пиков эритемной чувствительности. Поэтому, подбирая источник излучения можно вызвать пигментацию без эритемы и наоборот.
Эритема и пигментация не являются стадиями одного процесса, хотя они и следуют одна за другой. Это проявление разных, связанных друг с другом процессов. В клетках самого нижнего слоя эпидермиса - меланобластах - образуется кожный пигмент меланин. Исходным материалом для образования меланина служат аминокислоты и продукты распада адреналина.
Меланин - не просто пигмент или пассивный защитный экран отгораживающий живые ткани. Молекулы меланина представляют собой огромные молекулы с сетчатой структурой. В звеньях этих молекул связываются и нейтрализуются осколки разрушенных ультрафиолетом молекул, не пропуская их в кровь и внутреннюю среду организма.
Функция загара заключается в защите клеток дермы, расположенных в ней сосудах и нервах от длинноволновых ультрафиолетовых, видимых и инфракрасных лучей, вызывающих перегрев и тепловой удар. Ближние инфракрасные лучи и видимый свет, особенно его длинноволновая, "красная" часть, могут проникать в ткани гораздо глубже, чем ультрафиолетовые лучи, - на глубину 3...4 мм. Гранулы меланина - темно-коричневого, почти черного пигмента - поглощают излучение в широкой области спектра, защищая от перегрева нежные, привыкшие к постоянной температуре внутренние органы.
Оперативный механизм защиты организма от перегрева - прилив крови к коже и расширение кровеносных сосудов. Это приводит к увеличению теплоотдачи посредством излучения и конвекции (Общая поверхность кожного покрова взрослого человека составляет 1,6 м2). Если воздух и окружающие предметы имеют высокую температуру, вступает в действие еще один механизм охлаждения - испарение за счет потоотделения. Эти механизмы терморегуляции предназначены для защиты от воздействия видимых и инфракрасных лучей Солнца.
Потоотделение, наряду с функцией терморегуляции, препятствует воздействию ультрафиолетового излучения на человека. Пот содержит урокановую кислоту, которая поглощает коротковолновое излучение благодаря наличию в ее молекулах бензольного кольца.

Световое голодание (дефицит естественного УФ-облучения)

Ультрафиолетовое излучение поставляет энергию для фотохимических реакций в организме. В нормальных условиях солнечный свет вызывает образование небольшого количества активных продуктов фотолиза, которые оказывают на организм благотворное действие. Ультрафиолетовые лучи в дозах, вызывающих образование эритемы, усиливают работу кроветворных органов, ретикуло-эндоте-лиальную систему (Физиологическая система соединительной ткани, вырабатывающая антитела разрушающие чужеродные организму тела и микробы), барьерные свойства кожного покрова, устраняют аллергию.
Под действием ультрафиолетового излучения в коже человека из стероидных веществ образуется жирорастворимый витамин D. В отличие от других витаминов он может поступать в организм не только с пищей, но и образовываться в нем из провитаминов. Под влиянием ультрафиолетовых лучей с длиной волны 280...313 нм провитамины, содержащиеся в кожной смазке выделяемой сальными железами, превращаются в витамин D и всасываются в организм.
Физиологическая роль витамина D заключается в том, что он способствует усвоению кальция. Кальций входит в состав костей, участвует в свертывании крови, уплотняет клеточные и тканевые мембраны, регулирует активность ферментов. Болезнь, возникающая при недостатке витамина D у детей первых лет жизни, которых заботливые родители прячут от Солнца, называется рахитом.
Кроме естественных источников витамина D используют и искусственные, облучая провитамины ультрафиолетовыми лучами. При использовании искусственных источников ультрафиолетового излучения следует помнить, что лучи короче 270 нм разрушают витамин D. Поэтому с помощью фильтров в световом потоке ультрафиолетовых ламп подавляется коротковолновая часть спектра. Солнечное голодание проявляется в раздражительности, бессоннице, быстрой утомляемости человека. В больших городах, где воздух загрязнен пылью, ультрафиолетовые лучи вызывающие эритему почти не достигают поверхности Земли. Длительная работа в шахтах, машинных отделениях и закрытых заводских цехах, труд ночью, а сон в дневные часы приводят к световому голоданию. Световому голоданию способствует оконное стекло, которое поглощает 90...95% ультрафиолетовых лучей и не пропускает лучи в диапазоне 310...340 нм. Окраска стен также имеет существенное значение. Например, желтая окраска полностью поглощает ультрафиолетовые лучи. Недостаток света, особенно ультрафиолетового излучения, ощущают люди, домашние животные, птицы и комнатные растения в осенний, зимний и весенний периоды.
Восполнить недостаток ультрафиолетовых лучей позволяют лампы, которые наряду с видимым светом излучают ультрафиолетовые лучи в диапазоне длин волн 300...340 нм. Следует иметь в виду, что ошибки при назначении дозы облучения, невнимание к таким вопросам, как спектральный состав ультрафиолетовых ламп, направление излучения и высота размещения ламп, длительность горения ламп, могут вместо пользы принести вред.

Бактерицидное действие ультрафиолетового излучения

Нельзя не отметить и бактерицидную функцию УФ-лучей. В медицинских учреждениях активно пользуются этим свойством для профилактики внутрибольничной инфекции и обеспечения стерильности оперблоков и перевязочных. Воздействие ультрафиолета на клетки бактерий, а именно на молекулы ДНК, и развитие в них дальнейших химических реакций приводит к гибели микроорганизмов.
Загрязнение воздуха пылью, газами, водяными парами оказывает вредное влияние на организм. Ультрафиолетовые лучи Солнца усиливают процесс естественного самоочищения атмосферы от загрязнений, способствуя быстрому окислению пыли, частичек дыма и копоти, уничтожая на пылинках микроорганизмы. Природная способность к самоочищению имеет пределы и при очень сильном загрязнении воздуха оказывается недостаточной.
Ультрафиолетовое излучение с длиной волны 253...267 нм наиболее эффективно уничтожает микроорганизмы. Если принять максимум эффекта за 100%, то активность лучей с длиной волны 290 нм составит 30%, 300 нм - 6%, а лучей лежащих на границе видимого света 400 нм,- 0,01% максимальной.
Микроорганизмы обладают различной чувствительностью к ультрафиолетовым лучам. Дрожжи, плесневые грибки и споры бактерий гораздо устойчивее к их действию, чем вегетативные формы бактерий. Споры отдельных грибков, окруженные толстой и плотной оболочкой, отлично себя чувствуют в высоких слоях атмосферы и, не исключена возможность, что они могут путешествовать даже в космосе.
Чувствительность микроорганизмов к ультрафиолетовым лучам особенно велика в период деления и непосредственно перед ним. Кривые бактерицидного эффекта, торможения и роста клеток практически совпадают с кривой поглощения нуклеиновыми кислотами. Следовательно, денатурация и фотолиз нуклеиновых кислот приводит к прекращению деления и роста клеток микроорганизмов, а в больших дозах к их гибели.
Бактерицидные свойства ультрафиолетовых лучей используются для дезинфекции воздуха, инструмента, посуды, с их помощью увеличивают сроки хранения пищевых продуктов, обеззараживают питьевую воду, инактивируют вирусы при приготовлении вакцин.

Негативное воздействие ультрафиолетового облучения

Хорошо известен и ряд негативных эффектов, возникающих при воздействии УФ-излучения на организм человека, которые могут приводить к ряду серьезных структурных и функциональных повреждений кожи. Как известно, эти повреждения можно разделить на:
  • острые, вызванные большой дозой облучения, полученной за короткое время (например, солнечный ожог или острые фотодерматозы). Они происходят преимущественно за счет лучей УФ-В, энергия которых многократно превосходит энергию лучей УФ-А. Солнечная радиация распределяется неравномерно: 70% дозы лучей УФ-В, получаемых человеком, приходится на лето и полуденное время дня, когда лучи падают почти отвесно, а не скользят по касательной - в этих условиях поглощается максимальное количество излучения. Такие повреждения вызваны непосредственным действием УФ-излучения на хромофоры - именно эти молекулы избирательно поглощают УФ-лучи.
  • отсроченные, вызванные длительным облучением умеренными (субэритемными) дозами (например, к таким повреждениям относятся фотостарение, новообразования кожи, некоторые фотодерматиты). Они возникают преимущественно за счет лучей спектра А, которые несут меньшую энергию, но способны глубже проникать в кожу, и их интенсивность мало меняется в течение дня и практически не зависит от времени года. Как правило, этот тип повреждений - результат воздействия продуктов свободнорадикальных реакций (напомним, что свободные радикалы - это высокореактивные молекулы, активно взаимодействующие с белками, липидами и генетическим материалом клеток).
    Роль УФ-лучей спектра А в этиологии фотостарения доказана работами многих зарубежных и российских ученых, но тем не менее, механизмы фотостарения продолжают изучаться с использованием современной научно-технической базы, клеточной инженерии, биохимии и методов клеточной функциональной диагностики.
    Слизистая оболочка глаза - коньюктива - не имеет защитного рогового слоя, поэтому она более чувствительна к уф-облучению, чем кожа. Резь в глазу, краснота, слезотечение, частичная слепота появляются в результате дегенерации и гибели клеток коньюктивы и роговицы. Клетки при этом становятся непрозрачными. Длинноволновые ультрафиолетовые лучи, достигая хрусталика, в больших дозах могут вызвать его помутнение - катаракту.

    Искусственные источники УФ-излучения в медицине

    Бактерицидные лампы
    В качестве источников УФ-излучения используются разрядные лампы, у которых в процессе электрического разряда генерируется излучение, содержащие в своем составе диапазон длин волн 205-315 нм (остальная область спектра излучения играет второстепенную роль). К таким лампам относятся ртутные лампы низкого и высокого давления, а также ксеноновые импульсные лампы.
    Ртутные лампы низкого давления конструктивно и по электрическим параметрам практически ни чем не отличаются от обычных осветительных люминесцентных ламп, за исключением того, что их колба выполнена из специального кварцевого или увиолевого стекла с высоким коэффициентом пропускания УФ-излучения, на внутренней поверхности которой не нанесен слой люминофора. Эти лампы выпускаются в широком диапазоне мощностей от 8 до 60 Вт. Основное достоинство ртутных ламп низкого давления состоит в том, что более 60 % излучения приходится на линию с длиной волны 254 нм, лежащей в спектральной области максимального бактерицидного действия. Они имеют большой срок службы 5.000-10.000 ч и мгновенную способность к работе после их зажигания.
    Колба ртутно-кварцевых ламп высокого давления выполнена из кварцевого стекла. Достоинство этих ламп состоит в том, что они имеют при небольших габаритах большую единичную мощность от 100 до 1.000 Вт, что позволяет уменьшить число ламп в помещении, но обладают низкой бактерицидной отдачей и малым сроком службы 500-1.000 ч. Кроме того, нормальный режим горения наступает через 5-10 минут после их зажигания.
    Существенным недостатком непрерывных излучательных ламп является наличие риска загрязнения парами ртути окружающей среды при разрушении лампы. В случае нарушения целостности бактерицидных ламп и попадания ртути в помещение должна быть проведена тщательная демеркуризация загрязненного помещения.
    В последние годы появилось новое поколение излучателей - короткоимпульсные, обладающие гораздо большей биоцидной активностью. Принцип их действия основан на высокоинтенсивном импульсном облучении воздуха и поверхностей УФ-излучением сплошного спектра. Импульсное излучение получают при помощи ксеноновых ламп, а также с помощью лазеров. Данные об отличии биоцидного действия импульсного УФ-излучения от такового при традиционном УФ-излучении на сегодняшний день отсутствуют.
    Преимущество ксеноновых импульсных ламп обусловлено более высокой бактерицидной активностью и меньшим временем экспозиции. Достоинством ксеноновых ламп является также то, что при случайном их разрушении окружающая среда не загрязняется парами ртути. Основными недостатками этих ламп, сдерживающими их широкое применение, является необходимость использования для их работы высоковольтной, сложной и дорогостоящей аппаратуры, а также ограниченный ресурс излучателя (в среднем1-1,5 года).
    Бактерицидные лампы разделяются на озонные и безозонные .
    У озонных ламп в спектре излучения присутствует спектральная линия с длиной волны 185 нм, которая в результате взаимодействия с молекулами кислорода образует озон в воздушной среде. Высокие концентрации озона могут оказать неблагоприятное воздействие на здоровье людей. Использование этих ламп требует контроля содержания озона в воздушной среде и тщательного проветривания помещения.
    Для исключения возможности генерации озона разработаны так называемые бактерицидные "безозонные" лампы. У таких ламп за счет изготовления колбы из специального материала (кварцевое стекло с покрытием) или её конструкции исключается выход излучения линии 185 нм.
    Бактерицидные лампы, отслужившие свой срок службы или вышедшие из строя, должны храниться запакованными в отдельном помещении и требуют специальной утилизации согласно требованиям соответствующих нормативных документов.

    Бактерицидные облучатели.
    Бактерицидный облучатель-это электротехническое устройство, в котором размещены: бактерицидная лампа, отражатель и другие вспомогательные элементы, а также приспособления для его крепления. Бактерицидные облучатели перераспределяют поток излучения в окружающее пространство в заданном направлении и подразделяются на две группы - открытые и закрытые.
    Открытые облучатели используют прямой бактерицидный поток от ламп и отражателя (или без него), который охватывает широкую зону пространства вокруг них. Устанавливаются на потолке или стене. Облучатели, устанавливаемые в дверных проемах, называются барьерными облучателями или ультрафиолетовыми завесами, у которых бактерицидный поток ограничен небольшим телесным углом.
    Особое место занимают открытые комбинированные облучатели. В этих облучателях, за счет поворотного экрана, бактерицидный поток от ламп можно направлять в верхнюю или нижнюю зону пространства. Однако эффективность таких устройств значительно ниже из-за изменения длины волны при отражении и некоторых других факторов. При использовании комбинированных облучателей бактерицидный поток от экранированных ламп должен направляться в верхнюю зону помещения таким образом, чтобы исключить выход прямого потока от лампы или отражателя в нижнюю зону. При этом облученность от отраженных потоков от потолка и стен на условной поверхности на высоте 1,5 м от пола не должна превышать 0,001 Вт/м2.
    У закрытых облучателей (рециркуляторов) бактерицидный поток от ламп распределяется в ограниченном небольшом замкнутом пространстве и не имеет выхода наружу, при этом обеззараживание воздуха осуществляется в процессе его прокачки через вентиляционные отверстия рециркулятора. При применении приточно-вытяжной вентиляции бактерицидные лампы размещаются в выходной камере. Скорость воздушного потока обеспечивается либо естественной конвекцией, либо принудительно с помощью вентилятора. Облучатели закрытого типа (рециркуляторы) должны размещаться в помещении на стенах по ходу основных потоков воздуха (в частности, вблизи отопительных приборов) на высоте не менее 2 м от пола.
    Согласно перечню типовых помещений, разбитых по категориям (ГОСТ), рекомендуется помещения I и II категорий оборудовать как закрытыми облучателями (или приточно-вытяжной вентиляцией), так и открытыми или комбинированными - при их включении в отсутствии людей.
    В помещениях для детей и легочных больных рекомендуется применять облучатели с безозонными лампами. Искусственное ультрафиолетовое облучение, даже непрямое, противопоказано детям с активной формой туберкулеза, нефрозо-нефрита, лихорадочным состоянием и резким истощением.
    Использование ультрафиолетовых бактерицидных установок требует строгого выполнения мер безопасности, исключающих возможное вредное воздействие на человека ультрафиолетового бактерицидного излучения, озона и паров ртути.

    Основные меры безопасности и противопоказания к использованию терапевтического УФ-облучения.

    Перед использованием УФ-облучения от искусственных источников необходимо посетить врача с целью подбора и установления минимальной эритемной дозы (МЭД), которая является сугубо индивидуальным параметром для каждого человека.
    Поскольку индивидуальная чувствительность людей широко варьируется, рекомендуется продолжительность первого сеанса сократить вдвое по сравнению с рекомендованным временем, с тем чтобы установить кожную реакцию пользователя. Если после первого сеанса обнаружится какая-либо неблагоприятная реакция, дальнейшее использование УФ-облучения не рекомендуется.
    Регулярное облучение в течение длительного времени (год и больше) не должно превышать 2 сеансов в неделю, причем в год может быть не более 30 сеансов или 30 минимальных эритемных доз (МЭД), какой бы малой ни была эритемно-эффективная облученность. Рекомендуется иногда прерывать регулярные сеансы облучения.
    Терапевтическое облучение необходимо проводить с обязательным использованием надежных защитных очков для глаз.
    Кожа и глаза любого человека могут стать "мишенью" для ультрафиолета. Считается, что люди со светлой кожей более восприимчивы к повреждению, однако и смуглые, темнокожие люди тоже не могут чувствовать себя в полной безопасности.

    Очень осторожным с естественным и искусственным УФ-облучением всего тела следует быть следующим категориям людей:

  • Гинекологическим больным (ультрафиолет может усилить воспалительные явления).
  • Имеющих большое количество родимых пятен на теле, или участки скопления родимых пятен, или большие родимые пятна
  • Лечившимся от рака кожи в прошлом
  • Работающим в течение недели в помещении, а затем длительно загорающим в выходные дни
  • Живущим или отдыхающим в тропиках и субтропиках
  • Имеющим веснушки или ожоги
  • Альбиносам, блондинам, русоволосым и рыжеволосым людям
  • Имеющим среди близких родственников больных раком кожи, особенно меланомой
  • Живущим или отдыхающим в горах (каждые 1000 метров над уровнем моря прибавляют 4% - 5% солнечной активности)
  • Длительно пребывающим, в силу различных причин, на свежем воздухе
  • Перенесшим трансплантацию какого-либо органа
  • Страдающим некоторыми хроническими заболеваниями, например, системной красной волчанкой
  • Принимающим следующие лекарственные препараты: Антибактериальные (тетрациклины, сульфаниламиды и некоторые другие) Нестероидные противовоспалительные средства, например, напроксен Фенотиазиды, используемые в качестве успокаивающих и противотошнотных средств Трициклические антидепрессанты Мочегонные из группы тиазидов, например, гипотиазид Препараты сульфомочевины, таблетки, снижающие глюкозу в крови Иммунодепрессанты
  • Особенно опасно длительное неконтролируемое воздействие ультрафиолета для детей и подростков, поскольку может стать причиной развития во взрослом возрасте меланомы, наиболее быстро прогрессирующего рака кожи.

    Солнце является мощным источником тепла и света. Без этого небесного светила невозможно представить жизнь на Земле. Лучи солнца выделяют ультрафиолетовые лучи, которые нельзя увидеть невооружённым глазом. Ультрафиолет обладает многими как положительными, так и отрицательными свойствами для человеческого организма. Что означает ультрафиолетовое излучение, свойства которого считаются полезными для всех живых существ на земле?

    Солнце способно излучать 2 группы лучей (см. ): одни хорошо видны глазу человека, другие не видны вовсе. Невидимыми принято считать инфракрасное и ультрафиолетовое излучение. Инфракрасным светом называют поток электромагнитной волны, длина которой колеблется от 7 – 14 нм. Эти лучи выделяют мощный заряд тепловой энергии, за что получили название тепловых (см. ). Так что же такое ультрафиолетовое излучение? УФ-лучи образуют группу электромагнитных волн, их диапазон делится на ближние и дальние. Дальний луч называется вакуумным и целиком растворяется в верхнем слое атмосферы.

    Источники ультрафиолета

    До земли достают лишь ближние УФ-лучи, они делятся на 3 группы:

    1. Длинные УФ-А, их длина 400-315 нм.
    2. Средние УФ-В, имеющие длину 315-280 нм.
    3. Короткие УФ-С, длина примерно 280-100 нм.

    Кто из учёных открыл миру ультрафиолетовое излучение? Впервые о лучах заговорил индийский философ, живший в 13 веке. Он писал в своём учении о фиолетовом свете, который невозможно было лицезреть обычному человеку. Когда открыли инфракрасное излучение, физик из Германии Иоганн Вильгельм Риттер в 1801 году проводил опыты с хлоридом серебра и обнаружил, что вещество довольно быстро разлагается при помощи невидимого глазу излучения.

    Узнайте, какой приносит человеку. Нужно ли опасаться излучения от монитора?

    Есть ли ? Что надо знать об ИК-излучении?

    В нынешнее время используются различные приборы, которые помогают измерить частотность, величину, интенсивность ультрафиолетового излучения. Благодаря этим специальным приборам, применяемым в бытовых и профессиональных целях, можно выявить вред лучей для организма человека. Основными источниками ультрафиолетового излучения принято считать:

    • бактерицидные лампы (озонного и безозонного типа). Длина луча такой лампы равняется 185 нм (см. );
    • ртутно-кварцевые, диапазон излучения которых колеблется 100 – 400 нм;
    • витальные, имеющие люминесцентный тип. Длина волны такой лампы 280-380 нм.

    Солнечные лучи способны влиять на всё живое на планете, меняя строение клетки живого существа. Искусственный ультрафиолет так же, как солнце, может влиять на клетки. Однако в природе существуют разновидности микроорганизмов, на которых действие волн не вызывает никаких изменений, эти живые существа вполне могут существовать без ультрафиолета. Для остальных жизнь без УФ-излучения невозможна. Но считается ли вредным ультрафиолет для человека?

    Действие на человеческий организм

    Как ультрафиолетовое излучение воздействует на организм человека? Особенно вредным видом УФ-излучения считается коротковолновое, так как оно губительно действует на белковую молекулу живого организма. Попадать на поверхность земли этим лучам не позволяет озоновые слои атмосферы, так как задерживают и поглощают коротковолновое ультрафиолетовое излучение. В основном на землю поступают только длинная (УФ-А) и средняя (УФ-В) волны.

    Длинные способны проникать в глубокие слои кожи и вызывать некоторые негативные последствия. Средние волны всего лишь на несколько миллиметров проникают в эпидермис, но благодаря этому они наиболее полезные для лечения многих заболеваний. Именно такое среднее облучение ультрафиолетом благоприятно воздействует на органы и системы человеческого организма (лечит заболевания кожи, глаз, стабилизирует иммунную, эндокринную, центральную нервную систему).

    Важно грамотно применять искусственные источники ультрафиолета, например, бактерицидные лампы, вместо пользы, принесут большой вред человеческому организму, если их использовать для загара кожи. В другом случае, когда необходимо обработать определённый участок чего-либо от вредных микроорганизмов, они придутся как нельзя кстати. Использование искусственных приборов ультрафиолета должно выполняться только профессионалами, которые способны грамотно разбираться во всех тонкостях работы приборов УФ-излучения.

    Узнайте, для здоровья человека? Как снизить негативное воздействие прибора.

    Как вы думаете, - миф или реальность?

    Читайте, какие возникают у человека.

    Каково влияние ультрафиолетового излучения на организм человека? Лучи с успехом применяются в современной медицине, так как способны обладать успокаивающим, антиспастическим и болеутоляющим свойством. УФ-облучение воздействует на:

    • выработку витамина D, который просто необходим человеческому организму. Он позволяет правильно усвоить кальций, сформировать и укрепить скелет;
    • улучшение обменных процессов в организме;
    • стимуляцию и выработку эндорфинов или гормонов счастья;
    • способность понижать возбудимость нервных окончаний;
    • циркуляцию крови и расширение кровяных сосудов;
    • восстановительную функцию всего организма.

    Важно! При правильном дозировании ультрафиолетовых волн, организм способен вырабатывать защитные антитела, которые препятствуют проникновению и размножению возбудителей различных инфекций.

    Негативное влияние излучения

    Помимо полезных свойств, ультрафиолетовое излучение способно вызывать негативное действие на человеческий организм. Наиболее распространённым видом таких последствий является эритема. При избыточном воздействии лучей кожа становится гиперемированной, сосуды расширяются, поражённый участок кожи отекает. Далее может возникнуть ожог слоя эпидермиса с образованием пузыря. После того как пузырь лопнет, верхний слой кожи сходит, под ним образуется очень чувствительная область.

    После чрезмерного воздействия ультрафиолета у человека могут возникать следующие проявления:

    • апатия;
    • потеря сознания;
    • повышение температуры тела;
    • тошнота, отсутствие аппетита;
    • учащённый сердечный ритм.

    Внимание! Выраженность симптомов напрямую зависит от дозы ультрафиолета, от частоты излучения, индивидуальной чувствительности организма.

    Влияние на кожу ультрафиолет оказывает при сильной восприимчивости к лучам. Любая, даже незначительная доза облучения грозит ожогом, покраснением или аллергической реакцией на коже. Постоянный чрезмерный загар оборачивается ранним старением кожи. Эпидермис быстрее теряет необходимую влагу и эластичность.

    Длительное получение УФ-облучения грозит возникновением меланомы. Это раковое новообразование, способное появляться из родинок. Также у тех лиц, которые много времени проводят на солнце, возможно появление карциномы (чешуйчатой или базальноклеточной). Такая карцинома не вызывает смертельный исход, но удалять её придётся хирургическими методами.

    Негативное действие оказывает ультрафиолет на органы зрения. Люди, работающие со сварочными аппаратами и не соблюдающие технику безопасности, могут получить воспаление слизистой глаза, светобоязнь, слезотечение.

    Такая же участь ждёт тех, кто в зимнее время года много времени проводит на улице. Из-за того, что снег способен отражать ультрафиолетовые лучи, развивается такое заболевание, как «снежная слепота». Помимо этого негативного влияния на глаза, существует риск приобретения разрастания конъюнктивы и развитие катаракты (хрусталик глаза мутнеет).

    Как защитить себя от ультрафиолета

    Соблюдение некоторых правил позволит использовать УФ-облучение грамотно, не нанося вреда для организма человека. Необходимо защищать глаза солнечными очками от ультрафиолетового излучения, только стёкла должны быть качественными и отражать УФ, в противном случае эффект будет обратный. Кожный покров нужно защищать с помощью одежды.

    Лицам, работающим с источниками УФ, следует пользоваться защитными масками. Особенно это необходимо там, где используют ультрафиолетовую бактерицидную лампу, вредное действие которой направлено на глаза. Тем, кто любит красивый бронзовый загар, не рекомендуется частое посещение соляриев. В лечебных целях применять УФ-облучение можно только под контролем специалиста.

    Заключение

    Ультрафиолетовое излучение имеет как положительные свойства при применении, так и отрицательные. Если использовать лучи грамотно, не превышать пребывание на солнце, то для человека они принесут только пользу. Значительное превышение доз ультрафиолета грозит возникновением неприятных, а иногда и опасных для жизни последствий.


    Похожие публикации