Значение вакуума. Что есть физический вакуум? Теоретическое обоснование концепции эфира

Очень часто к нам обращаются люди, которые хотят купить вакуумный насос, но слабо представляют, что такое вакуум.
Попытаемся разобраться, что же это такое.

По определению, вакуум – это пространство, свободное от вещества (от латинского слова «vacuus» - пустой).
Существует несколько определений вакуума: технический вакуум, физический вакуум, космический вакуум и т.д.
Мы будем рассматривать технический вакуум, который определяется как сильно разреженный газ.

Рассмотрим на примере, что такое вакуум и как его измеряют.
На нашей планете существует атмосферное давление, принятое за единицу (одна атмосфера). Оно меняется в зависимости от погоды, высоты на уровнем моря, но мы не будем принимать это во внимание, так как это не будет никак влиять на понимание понятия вакуум.
Итак, мы имеем давление на поверхности земли равное 1 атмосфере. Всё, что ниже 1 атмосферы (в закрытом сосуде), называется техническим вакуумом.

Возьмём некий сосуд и закроем его герметичной крышкой. Давление в сосуде будет равно 1 атмосфере. Если мы начнём откачивать из сосуда воздух, то в нём возникнет разряжение, которое и называется вакуумом.
Рассмотрим на примере: в левом сосуде 10 кружочков. Пусть это будет 1 атмосфера.
«откачаем» половину – получим 0,5 атм, оставим один – получим 0,1 атм.

Так как в сосуде всего одна атмосфера, то и максимально возможный вакуум мы можем получить (теоретически) ноль атмосфер.
"Теоретически" - т.к. выловить все молекулы воздуха из сосуда практически невозможно.
По этому, в любом сосуде, из которого откачали воздух (газ) всегда остается какое-то его минимальное количество. Это и называют "остаточным давлением", то есть давление, которое осталось в сосуде после откачки из него газов.
Существуют специальные насосы, которые могут достичь глубокого вакуума до 0,00001 Па, но всё равно не до нуля.
В обычной жизни редко когда требуется вакуум глубже 0,5 - 10 Па (0,00005-0,0001 атм).

Есть несколько вариантов измерения вакуума, которые зависят от выбора точки отсчёта:
1. За единицу принимается атмосферное давление. Всё, что ниже единицы – вакуум.
То есть шкала вакуумметра от 1 до 0 атм (1…0,9…0,8…0,7…..0,2…0,1….0).
2. За ноль принимается атмосферное давление. То есть вакуум – все отрицательные числа меньше 0 и до -1.
То есть шкала вакуумметра от 0 до -1 (0, -0,1…-0,2….,-0,9,…-1).
Также шкалы могут быть в кПа, mBar, но это всё аналогично шкалам в атмосферах.

На картинке показаны вакуумметры с различными шкалами, которые показывают одинаковый вакуум:

Из всего сказанного выше видно, что величина вакуума не может быть больше атмосферного давления.

К нам почти каждый день обращаются люди, которые хотят получить вакуум -2, -3 атм и т.д.
И они очень удивляются когда узнают, что это невозможно (кстати, каждый второй из них говорит, что "вы сами ничего не знаете", "а у соседа так" и т.д. и.т.п.)

На самом деле, все эти люди хотят формовать детали под вакуумом, но чтобы прижим детали был более 1 кг/см2 (1 атмосферы).
Этого можно достичь, если накрыть изделие плёнкой, откачать из под неё воздух (в этом случае, в зависимости от созданного вакуума, максимальный прижим составит 1 кг/см2 (1 атм=1 кг/см2)), и после этого поместить это всё в автоклав, в котором будет создано избыточное давление. То есть для создания прижима в 2 кг/см2, достаточно создать в автоклаве избыточное давление в 1 атм.

Теперь несколько слов о том, как многие клиенты измеряют вакуум на выставке ООО "Насосы Ампика", у нас в офисе:
включают насос, прикладывают палец (ладонь) к всасывающему отверстию вакуумного насоса и сразу делают вывод о величине вакуума.

Обычно, все очень любят сравнивать советский вакуумный насос 2НВР-5ДМ и предлагаемый нами его аналог VE-2100.
После такой проверки, всегда говорят одно и тоже – вакуум у 2НВР-5ДМ выше (хотя на самом деле оба насоса выдают одинаковые параметры по вакууму).

В чем же причина такой реакции? А как всегда – в отсутствии знаний законов физики и что такое давление вообще.

Немного ликбеза: давление «P» – это сила, которая действует на некоторую площадь поверхности, направленная перпендикулярно этой поверхности (отношение силы «F» к площади поверхности «S»), то есть P=F/S.
По-простому – это сила, распределённая по площади поверхности.
Из этой формулы видно, что чем больше площадь поверхности, тем меньше будет давление. А также сила, которая потребуется для отрыва руки или пальца от входного отверстия насоса, прямо пропорциональна величине площади поверхности (F=P*S).
Диаметр всасывающего отверстия у вакуумного насоса 2НВР-5ДМ – 25 мм (площадь поверхности 78,5 мм2).
Диаметр всасывающего отверстия у вакуумного насоса VE-2100 – 6 мм (площадь поверхности 18,8 мм2).
То есть для отрыва руки от отверстия диаметром 25 мм, требуется сила в 4,2 раза большая, чем для диаметра отверстия 6 мм (при одинаковом давлении).
Именно по этому, когда вакуум измеряют пальцами, получается такой парадокс.
Давление «P», в этом случае, рассчитывается как разница между атмосферным давлением и остаточным давлением в сосуде (то есть вакуумом в насосе).

Как посчитать силу прижима какой-либо детали к поверхности?
Очень просто. Можно воспользоваться формулой приведенной выше, но попробуем объяснить попроще.
Например, пусть требуется узнать, с какой силой может быть прижата деталь размером 10х10 см при создании под ней вакуума насосом ВВН 1-0,75.

Берём остаточное давление, которое создаёт этот вакуумный насос серии ВВН.
Конкретно у этого водокольцевого насоса ВВН 1-0,75 оно составляет 0,4 атм.
1 атмосфера равна 1 кг/см2.
Площадь поверхности детали – 100 см2 (10см х10 см).
То есть, если создать максимальный вакуум (то есть давление на деталь будет 1 атм), то деталь прижмётся с силой 100 кг.
Так как у нас вакуум 0,4 атм, то прижим составит 0,4х100=40 кг.
Но это в теории, при идеальных условиях, если не будет подсоса воздуха и т.п.
Реально нужно это учитывать и прижим будет на 20…40% меньше в зависимости от типа поверхности, скорости откачки, и т.п.

Теперь пару слов о механических вакуумметрах.
Эти устройства показывают остаточное давление в пределах 0,05…1 атм.
То есть он не покажет более глубокого вакуума (будет всегда показывать «0»). Например, в любом пластинчато-роторном вакуумном насосе, по достижении его максимального вакуума, механический вакуумметр всегда будет показывать «0». Если требуется визуальное отображение значений остаточного давления, то нужно ставить электронный вакуумметр, например VG-64 .

Часто к нам приходят клиенты, которые формуют детали под вакуумом (например, детали из композиционных материалов: углепластика, стеклопластика и т.п.), это нужно для того, чтобы во время формовки из связующего вещества (смолы) выходил газ и тем самым улучшались свойства готового продукта, а так же деталь прижималась к форме плёнкой, из-под которой откачивают воздух.
Встаёт вопрос: каким вакуумным насосом пользоваться – одноступенчатым или двухступенчатым?
Обычно думают, что раз вакуум у двухступенчатого выше, то и детали получаться лучше.

Вакуум у одноступенчатого насоса 20 Па, у двухступенчатого 2 Па. Кажется, что раз разница в давлении в 10 раз, то и прижиматься деталь будет гораздо сильнее.
Но так ли это на самом деле?

1 атм = 100000 Па = 1 кг/см2.
Значит разница в прижиме плёнки при вакууме 20 Па и 2 Па составит 0,00018 кг/см2 (кому не лень – посчитает сам).

То есть, практически, разницы никакой не будет, т.к. выигрыш в 0,18 г в силе прижима погоды не сделает.

Как рассчитать за какое время вакуумный насос откачает вакуумную камеру?
В отличии от жидкостей, газы занимают весь имеющийся объем и если вакуумный насос откачал половину воздуха, находящегося в вакуумной камере, то оставшаяся часть воздуха вновь расширится и займет весь объем.
Ниже приведена формула для вычисления этого параметра.

t = (V/S)*ln(p1/p2)*F , где

t - время (в часах) необходимое для откачки вакуумного объема от давления p1 до давления p2
V - объем откачиваемой емкости, м3
S - быстрота действия вакуумного насоса, м3/час
p1 - начальное давление в откачиваемой емкости, мбар
p2 - конечное давление в откачиваемой емкости, мбар
ln - натуральный логарифм

F - поправочный коэффициент, зависит от конечного давления в емкости p2:
- p2 от 1000 до 250 мбар F=1
- p2 от 250 до 100 мбар F=1,5
- p2 от 100 до 50 мбар F=1,75
- p2 от 50 до 20 мбар F=2
- p2 от 20 до 5 мбар F=2,5
- p2 от 5 до 1 мбар F=3

В двух словах, это всё.
Надеемся, что кому-нибудь эта информация поможет сделать правильный выбор вакуумного оборудования и блеснуть знаниями за кружкой пива...

Объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в частности толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

Высокий вакуум в микроскопических порах некоторых кристаллов и в ультратонких капиллярах достигается уже при атмосферном давлении, поскольку диаметр поры/капилляра становится меньше, чем длина свободного пробега молекулы, равная в воздухе при нормальных условиях ~60 нанометрам .

Стоит отметить, что даже в идеальном вакууме при конечной температуре всегда имеется некоторое тепловое излучение (газ фотонов). Таким образом, тело, помещённое в идеальный вакуум, рано или поздно придёт в тепловое равновесие со стенками вакуумной камеры за счёт обмена тепловыми фотонами.

Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах (сосудах Дьюара), состоящих из ёмкости с двойными стенками, пространство между которыми вакуумировано.

Вакуум широко применяется в электровакуумных приборах - радиолампах (например, магнетронах микроволновых печей), электронно-лучевых трубках и т. п.

Физический вакуум

Под физическим вакуумом в квантовой физике понимают низшее (основное) энергетическое состояние квантованного поля, обладающее нулевыми импульсом, моментом импульса и другими квантовыми числами. При этом такое состояние вовсе не обязательно соответствует пустоте: поле в низшем состоянии может быть, например, полем квазичастиц в твёрдом теле или даже в ядре атома, где плотность чрезвычайно высока. Физическим вакуумом называют также полностью лишённое вещества пространство, заполненное полем в таком состоянии . Такое состояние не является абсолютной пустотой . Квантовая теория поля утверждает, что, в согласии с принципом неопределённости , в физическом вакууме постоянно рождаются и исчезают виртуальные частицы : происходят так называемые нулевые колебания полей. В некоторых конкретных теориях поля вакуум может обладать нетривиальными топологическими свойствами. В теории могут существовать несколько различных вакуумов, различающихся плотностью энергии или другими физическими параметрами (в зависимости от применяемых гипотез и теорий). Вырождение вакуума при спонтанном нарушении симметрии приводит к существованию непрерывного спектра вакуумных состояний, отличающихся друг от друга числом голдстоуновских бозонов . Локальные минимумы энергии при разных значениях какого-либо поля, отличающиеся по энергии от глобального минимума, носят название ложных вакуумов ; такие состояния метастабильны и стремятся распасться с выделением энергии, перейдя в истинный вакуум или в один из нижележащих ложных вакуумов.

Некоторые из этих предсказаний теории поля уже были успешно подтверждены экспериментом. Так, эффект Казимира и лэмбовский сдвиг атомных уровней объясняется нулевыми колебаниями электромагнитного поля в физическом вакууме. На некоторых других представлениях о вакууме базируются современные физические теории. Например, существование нескольких вакуумных состояний (упомянутых выше ложных вакуумов) является одной из главных основ инфляционной теории Большого взрыва .

Ложный вакуум

Ложный вакуум - состояние в квантовой теории поля , которое не является состоянием с глобально минимальной энергией , а соответствует её локальному минимуму. Такое состояние стабильно в течение определённого времени (метастабильно), но может «туннелировать » в состояние истинного вакуума.

Эйнштейновский вакуум

Эйнштейновский вакуум - иногда встречающееся название для решений уравнений Эйнштейна в общей теории относительности для пустого, без материи, пространства-времени . Синоним - пространство Эйнштейна .

Уравнения Эйнштейна связывают метрику пространства-времени (метрический тензор g μν ) с тензором энергии-импульса. В общем виде они записываются как

G μ ν + Λ g μ ν = 8 π G c 4 T μ ν , {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu },}

где тензор Эйнштейна G μν является определённой функцией метрического тензора и его частных производных, R - скалярная кривизна , Λ - космологическая постоянная , T μν - тензор энергии-импульса материи, π - число пи , c - скорость света в вакууме, G - гравитационная постоянная Ньютона.

Вакуумные решения этих уравнений получаются при отсутствии материи, то есть при тождественном равенстве нулю тензора энергии-импульса в рассматриваемой области пространства-времени: T μν = 0 . Часто лямбда-член также принимается равным нулю, особенно при исследовании локальных (некосмологических) решений. Однако при рассмотрении вакуумных решений с ненулевым лямбда-членом (лямбда-вакуум ) возникают такие важные космологические модели, как модель Де Ситтера (Λ > 0 ) и модель анти-Де Ситтера (Λ < 0 ).

Тривиальным вакуумным решением уравнений Эйнштейна является плоское пространство Минковского , то есть метрика, рассматриваемая в специальной теории относительности .

Другие вакуумные решения уравнений Эйнштейна включают в себя, в частности, следующие случаи:

  • Космологическая модель Милна (частный случай метрики Фридмана с нулевой плотностью энергии)
  • Метрика Шварцшильда , описывающая геометрию вокруг сферически симметричной массы
  • Метрика Керра , описывающая геометрию вокруг вращающейся массы
  • Плоская гравитационная волна (и другие волновые решения)

Космическое пространство

Космическое пространство имеет очень низкую плотность и давление и является наилучшим приближением физического вакуума. Но космический вакуум не является действительно совершенным, даже в межзвёздном пространстве есть несколько атомов водорода на кубический сантиметр.

Звёзды, планеты и спутники держат свои атмосферы силой притяжения, и как таковой у атмосферы нет чётко очерченной границы: плотность атмосферного газа просто уменьшается с расстоянием от объекта. Атмосферное давление Земли падает до примерно 3,2×10 −2 Па на 100 км высоты - на так называемой линии Кармана , которая является общим определением границы с космическим пространством. За этой линией изотропное давление газа быстро становится незначительным по сравнению с давлением излучения от Солнца и динамическим давлением солнечного ветра , поэтому определение давления становится трудно интерпретировать. Термосфера в этом диапазоне имеет большие градиенты давления, температуры и состава, и сильно варьируется в связи с космической погодой.

Плотность атмосферы в течение первых нескольких сотен километров выше линии Кармана всё ещё достаточна для оказания значительного сопротивления движению искусственных спутников Земли . Большинство спутников работают в этой области, называемой низкой околоземной орбитой, и должны подрабатывать двигателями каждые несколько дней для поддержания стабильной орбиты.

Космическое пространство заполнено большим количеством фотонов, так называемым реликтовым излучением , а также большим количеством реликтовых нейтрино, пока не поддающихся обнаружению. Текущая температура этих излучений составляет около 3 К, или −270 °C .

История изучения вакуума

Идея вакуума (пустоты) была предметом споров ещё со времён древнегреческих и древнеримских философов. Атомисты - Левкипп (ок. 500 г. до н. э.), Демокрит (около 460-370 гг. до н. э.), Эпикур (341-270 гг. до н. э.), Лукреций (ок. 99-55 гг. до н. э.) и их последователи - предполагали, что всё существующее - атомы и пустота между ними, причём без вакуума не было бы и движения, атомы не могли бы двигаться, если бы между ними не было пустого пространства. Стратон (ок. 270 г. до н. э.) и многие философы в более поздние времена полагали, что пустота может быть «сплошной» (vacuum coacervatum ) и «рассеянной» (в промежутках между частицами вещества, vacuum disseminatum ).

Вакуумный насос Герике был значительно усовершенствован Робертом Бойлем , что позволило ему выполнить ряд экспериментов для выяснения свойств вакуума и его влияния на различные объекты. Бойль обнаружил, что в вакууме гибнут мелкие животные, огонь потухает, а дым опускается вниз (и, следовательно, так же подвержен влиянию силы тяжести, как и другие тела). Бойль выяснил также, что поднятие жидкости в капиллярах происходит и в вакууме, и тем самым опроверг господствовавшее тогда мнение, что в этом явлении участвует давление воздуха. Напротив, перетекание жидкости через сифон в вакууме прекращалось, чем было доказано, что это явление обусловлено атмосферным давлением. Он показал, что при химических реакциях (таких, как гашение извести), а также при взаимном трении тел тепло выделяется и в вакууме.

Влияние на людей и животных

Люди и животные, подвергшиеся воздействию вакуума, теряют сознание через несколько секунд и умирают от гипоксии в течение нескольких минут, но эти симптомы, как правило, не похожи на те, которые показывают в популярной культуре и СМИ. Снижение давления понижает температуру кипения, при которой кровь и другие биологические жидкости должны закипеть, но упругое давление кровеносных сосудов не позволяет крови достичь температуры кипения 37 °С . Хотя кровь не вскипает, эффект образования газовых пузырьков в ней и других жидкостях тела при низких давлениях, известный как эбуллизм (воздушная эмфизема), является серьёзной проблемой. Газ может раздувать тело в два раза больше его нормального размера, но ткани достаточно эластичны, чтобы предотвратить их разрыв . Отёки и эбуллизм можно предотвратить специальным лётным костюмом. Астронавты шаттлов носили специальную эластичную одежду под названием Crew Altitude Protection Suit (CAPS), которая предотвращает эбуллизм при давлении более 2 кПа (15 мм рт.ст. ) . Быстрое испарение воды охлаждает кожу и слизистые оболочки до 0 °С, особенно во рту, но это не представляет большой опасности.

Эксперименты на животных показывают, что после 90 секунд нахождения организма в вакууме обычно происходит быстрое и полное восстановление организма, однако более долгое пребывание в вакууме фатально и реанимация бесполезна . Имеется лишь ограниченный объем данных о влиянии вакуума на человека (как правило, это происходило при попадании людей в аварию), но они согласуются с данными, полученными в экспериментах на животных. Конечности могут находиться в вакууме гораздо дольше, если дыхание не нарушено . Первым показал, что вакуум смертелен для мелких животных, Роберт Бойль в 1660 году .

Измерение

Степень вакуума определяется количеством вещества, оставшимся в системе. Вакуум, в первую очередь, определяется абсолютным давлением , а полная характеристика требует дополнительных параметров, таких как температура и химический состав. Одним из наиболее важных параметров является средняя длина свободного пробега (MFP) остаточных газов, которая указывает среднее расстояние, которое частица пролетает за время свободного пробега от одного столкновения до следующего. Если плотность газа уменьшается, MFP увеличивается. MFP в воздухе при атмосферном давлении очень короткий, около 70 нм , а при 100 мПа (~1×10 −3 торр ) MFP воздуха составляет примерно 100 мм . Свойства разреженного газа сильно изменяются, когда длина свободного пробега становится сравнима с размерами сосуда, в котором находится газ.

Вакуум подразделяется на диапазоны в соответствии с технологией, необходимой для его достижения или измерения. Эти диапазоны не имеют общепризнанных определений, но типичное распределение выглядит следующим образом :

Давление () Давление (Па)
Атмосферное давление 760 1,013×10 +5
Низкий вакуум от 760 до 25 от 1×10 +5 до 3,3×10 +3
Средний вакуум от 25 до 1×10 −3 от 3,3×10 +3 до 1,3×10 −1
Высокий вакуум от 1×10 −3 до 1×10 −9 от 1,3×10 −1 до 1,3×10 −7
Сверхвысокий вакуум от 1×10 −9 до 1×10 −12 от 1,3×10 −7 до 1,3×10 −10
Экстремальный вакуум <1×10 −12 <1,3×10 −10
Космическое пространство от 1×10 −6 до <3×10 −17 от 1,3×10 −4 до <1,3×10 −15
Абсолютный вакуум 0 0

Применение

Вакуум полезен для многих процессов и применяется в разных устройствах. Впервые для массово используемых товаров он был применён в лампах накаливания с целью защиты нити от химического разложения . Химическая инертность материалов, обеспечиваемая вакуумом, также полезна для электронно-лучевой сварки , холодной сварки , вакуумной упаковки и вакуумной жарки. Сверхвысокий вакуум используется при изучении атомарно чистых субстратов, так как только очень высокий вакуум сохраняет поверхности чистыми на атомарном уровне в течение достачно длительного времени (от минут до суток). При высоком и сверхвысоком вакуумуировании устраняется противодействие воздуха, позволяя пучкам частиц осаждать или удалять материалы без загрязнения. Этот принцип лежит в основе химического осаждения из газовой фазы , вакуумного напыления и сухого травления, которые применяются в производстве полупроводников и оптических покрытий, а также в химии поверхности. Снижение конвекции обеспечивает теплоизоляцию в термосах . Глубокий вакуум понижает температуру кипения жидкости и способствует низкой температуре дегазации , которое используется в сублимационной сушке , приготовлении клея , перегонке , металлургии и вакуумной очистке. Электрические свойства вакуума делают возможными электронные микроскопы и вакуумные трубки , включая катодные лучевые трубки . Вакуумные выключатели используются в электрических распределительных устройствах . Вакуумный пробой имеет промышленное значение для производства определенных марок стали или материалов высокой чистоты. Исключение трения воздуха полезно для накопления энергии маховика и ультрацентрифуг .

Управляемые вакуумом машины

Вакуум обычно используется, чтобы произвести всасывание , которое имеет ещё более широкий спектр применения. Паровой двигатель Ньюкомена использовал вакуум вместо давления, чтобы управлять поршнем. В XIX веке вакуум был использован для тяги на экспериментальной пневматической железной дороге Изамбарда Брунеля . Вакуумные тормоза когда-то широко использовались на поездах в Великобритании, но, за исключением исторических железных дорог , они были заменены пневматическими тормозами .

Этот насос мелководной скважины уменьшает давление атмосферы внутри собственной камеры. Разрежение атмосферы расширяется вниз в скважину и заставляет воду течь вверх по трубе в насос, чтобы выровнять пониженное давление. Насосы с наземной камерой эффективны только до глубины около 9 метров, за счет веса столба воды уравнивающего атмосферное давление.

Вакуум впускного коллектора можно использовать для того, чтобы управлять вспомогательным оборудованием на автомобилях. Наиболее известное применение - это вакуумный усилитель для увеличения мощности тормозов . Ранее вакуум применялся в вакуум-приводах стеклоочистителя и топливных насосах Autovac. Некоторые авиационные приборы (авиагоризонт и указатель курса) обычно управляются вакуумом, как страховка от выхода из строя всех (электрических) приборов, поскольку ранние самолеты часто не имели электрических систем, и поскольку есть два легкодоступных источников вакуума на движущемся самолете, двигатель и трубка Вентури . При вакуумноиндукционной плавке применяют электромагнитную индукцию в вакууме.

Поддержание вакуума в конденсаторе важно для эффективной работы паровых турбин . Для этого используется паровой инжектор или водокольцевой насос . Обычный вакуум, поддерживаемый в паровом объёме конденсатора на выхлопном патрубке турбины (еще его называют давление конденсатора турбины), находится в диапазоне от 5 до 15 кПа, в зависимости от типа конденсатора и условий окружающей среды.

Дегазация

Испарение и сублимация в вакууме называется дегазацией . Все материалы, твердые или жидкие, немного парят (происходит газовыделение), и их дегазация необходима когда давление вакуума падает ниже давления их пара. Парение материалов в вакууме имеет такое же эффект как натекание и может ограничить достижимый вакуум. Продукты испарения могут конденсироваться на близлежащих более холодных поверхностях, что может вызвать проблемы, если они покроют оптические приборы или вступят в реакцию с другими материалами. Это вызывает большие трудности при полётах в космосе, где затемненный телескоп или элемент солнечной батареи может сорвать высокозатратную операцию.

Самым распространенным выделяющимся продуктом в вакуумных системах является вода, поглощенная материалами камер . Её количество может быть уменьшено сушкой или прогревом камеры и удалением абсорбирующих материалов. Испаряющаяся вода может конденсироваться в масле пластинчато-роторных насосов и резко уменьшить их рабочую скорость, если не используется газобалластное устройство. Высоковакуумные системы должны быть чистыми, в них не должно оставаться органических веществ, чтобы свести к минимуму газовыделение.

Сверхвысокие вакуумные системы, как правило, отжигаются, желательно под вакуумом, чтобы временно повысить испарение всех материалов и выпарить их. После того, как большая часть испаряющихся материалов выпарена и удалена, система может быть охлаждена, для уменьшения парения материалов и минимизации остаточного газовыделения во время рабочей эксплуатации. Некоторые системы охлаждают существенно ниже комнатной температуры с помощью жидкого азота для полного прекращения остаточного газовыделения и одновременно создания эффекта криогенной откачки системы.

Откачка и атмосферное давление

Газы вообще нельзя вытолкнуть, поэтому вакуум не может быть создан всасыванием. Всасывание может распространить и разбавить вакуум, позволяя высокому давлению вводить в него газы, но, прежде чем всасывание может произойти, необходимо вакуум создать. Самый простой способ создать искусственный вакуум - расширить объем камеры. Например, мышца диафрагмы расширяет грудную полость, что приводит к увеличению объема легких. Это расширение уменьшает давление и создает низкий вакуум, который вскоре заполняется воздухом, нагнетаемым атмосферным давлением.

Чтобы продолжать опустошение камеры бесконечно, не используя постоянно её увеличение, вакуумирующий её отсек может быть закрыт, продут, расширен снова, и так много раз. Это принцип работы насосов с принудительным вытеснением (газопереносных), например, ручной водяной насос. Внутри насоса механизм расширяет небольшую герметичную полость для создания вакуума. Из-за перепада давления часть жидкости из камеры (или колодца, в нашем примере) вталкивается в маленькую полость насоса. Затем полость насоса герметично закрывается от камеры, открывается в атмосферу и сжимается до минимального размера, выталкивая жидкость.

Приведенное выше объяснение представляет собой простое введение в вакуумирование и не является типичным для всего диапазона используемых насосов. Разработаны много вариаций насосов с принудительным вытеснением, и множество конструкций насосов основаны на радикально других принципах. Насосы передачи импульса, которые имеют некоторое сходство с динамическими насосами, используемыми при более высоких давлениях, могут обеспечить намного более высокое качество вакуума, чем насосы с принудительным вытеснением. Газосвязывающие насосы способные захватывать газы в твердом или поглощенном состоянии, работают часто без движущихся частей, без уплотнений и без вибрации. Ни один из этих насосов не является универсальным; каждый тип имеет серьезные ограничения применения. У всех есть трудности с откачкой газов с малой массой молекул, особенно водорода, гелия и неона.

Вакуум (англ. vacuum , нем. Vakuum , от лат. vacuus - пустой) - многозначный физический термин, который в зависимости от контекста может означать:

  • Разреженный состояние газа. Такой вакуум называют частичным . Различают высокий, средний и низкий вакуум. Высоким называется вакуум, при котором длина свободного пробега молекул газа превышает линейные размеры сосуда, в котором содержится газ; если свободный пробег молекул газа и линейные размеры сосуда соизмеримыми величинами, то вакуум называется средним , а если свободный пробег молекул газа меньше линейные размеры сосуда - низким .
На практике качество вакуума измеряется в остаточном давлении. Высокий вакуум соответствует давлению, низкому за 10 -3 Торр. Максимально высокий вакуум, которого можно достичь в современных лабораториях, имеет давление 10 -13 торр.
  • Идеализированная абстакция, пространство, в котором нет совсем вещества. Такой вакуум называют идеальным.
  • Физическая система без частиц и квантов поля. Это самый низкий состояние квантовой системы, при котором ее энергия минимальна, называемый вакуумным состоянием. Согласно принципу неопределенности для такого вакуума определенная часть физических величин не может быть точно определенной.

Частичный вакуум с изобретением ламп накаливания и вакуумных ламп в начале XX века стал широко использоваться в промышленности. В вакууме проводится значительное количество физических экспериментов: отсутствие воздуха или атмосферы другого состава дозовляе уменьшить нежелательные посторонние воздействия на объект исследования. Интерес к изучению вакуума увеличился после выхода человека в космос. Околоземное и межпланетное пространство является очень разреженным газом, который можно характеризовать как вакуум.

Исследования вакуума начались с создания «торричеллиевои пустоты» (ru) итальянским физиком Эванджелиста Торричелли в середине 17 века.

Технический вакуум

Техническим называют частичный вакуум, образовавшийся в земных условиях. Совокупность инструментов, используемых пр этом называют вакуумной техникой. Главное место среди орудий вакуумной техники занимают насосы различной конструкции и принципа действия.

Основным инструментом для создания низкого вакуума является объемный насос. Принцип его действия заключается в циклическом увеличении и уменьшении объема газа в сосуде. Во время фазы увеличения объема, всасывания, газ в сосуде расширяется, заполняя дополнительный объем, который затем отсекается и выбрасывается.

Создание высокого и сверхвысокого вакуума является сложной технической проблемой. Когда молекул газа в вакуумной камере мало, возникают проблемы, связанные с загрязнением камеры молекулами масла, недостаточной плотности прокладок, дегазации стенок сосуда, тому подобное.

Для получения высокого вакуума используют диффузионные насосы. Принцип действия насосов этого типа основывается на том, что молекулы газа не диффундируют против течения. Поэтому диффузионные насосы используют струю для вытягивания молекул газа из вакуумной камеры.

Насосы-ловители позволяют достичь еще более высокого вакуума. Их действие может базироваться на различных физических и химических принципах: криогенные насосы используют низкую температуру, для конденсации газа в сосуде, в химических насосах молекулы газа связываются химическими веществами или адсорбируют на поверхности, в ионизационных насосах газ в вакуумной камере йонизуеться и извлекается с помощью сильных электрических полей.

Реальные вакуумные установки состоят из комбинации насосов различного типа, каждый из которых выполняет свою задачу и работает при разной степени разрежения газа в вакуумной камере. К инструментам вакуумной техники относятся также различные измерительные приборы, используемые для определения качества созданного вакуума.

Физический вакуум

Физическим вакуумом называют идеализированное понятие пространства, в котором нет частиц. Экспериментально такого состояния достичь невозможно, отдельные атомы и ионы есть даже в чрезвычайно разреженной межгалактическом пространстве. Абстрактное понятие физического вакуума используется, например, для определения скорости света, как скорости распространения электромагнитного взаимодействия в пустоте без частиц.

Хотя может показаться, что пустое пространство является простейшей физической системой, в действительности это не так. Развитие квантовой механики показал, что вакуум является сложным физическим объектом, свойства которого еще не совсем понятны.

Во-первых, вакуум, пожалуй, заполненный нулевыми колебаниями электромагнитного поля. квантами электромагнитного поля являются фотоны, частицы принадлежащих к бозонов. Волновые функции бозонов в низком состоянии не равны нулю. При квантовании поля бозонов, они рассматриваются как гармонические осцилляторы. В основном состоянии бозоны имеют не только отличную от нуля волновую функцию, но и ненулевую энергию. Так, вакуум заполнен нулевыми колебаниями различных мод электромагнитного и других бозонних полей со всеми возможными волновыми векторами, направлениями прозповсюдження и поляризациями. Каждая из этих мод имеет энергию, где - сводная постоянная Планка, а? - циклическая частота. Это порождает проблему энергии вакуума, поскольку таких мод бесконечно много, и суммарная энергия вакуума должна быть бесконечной. Однако, физические эксперименты, в частности Лэмб смещение и эффект Казимира свидетельствуют о том, что нулевые колебания электромагнитного поля - реальность, и, что они могут взаимодействовать с другими физическими объектами.

Другая идея, которая еще больше осложняет понимание вакуума, связанная с уравнением Дирака, описывающее релятивистскую квантовую частицу, в частности электрон.Уравнение Дирака для свободного электрона имеет четыре развязки, два из них с отрицательной энергией. Поль Дирак показал, что с помощью операции зарядового сопряжения эти развязки можно трактовать, как развязки с положительной энергией, но для частицы с противоположным, положительным, зарядом, т.е. античастицы электрона. Такая античастица была обнаружена экспериментально и получила название позитрона.

Трактовка Дирака похоже на терии полупроводников, Частицы, электроны, аналогичные электронам проводимости, тогда как античастицы, позитроны, аналогичные дырками.В основном состоянии, соответствующем вакуума, все энергетические состояния с отрицательной энергией, заполнены, а позитрон соответствует незаполненном состоянию.

При рассмотрении взаимодействий между частицами в квантовой электродинамике часто необходимо учитывать возможность образования из вакуума виртуальных электрон-позитронных пар.

Вакуум, область чрезвычайно низкого давления. В межзвездном пространстве царит высокий вакуум, со средней плотностью менее 1 молекулы на кубический сантиметр. Самый разреженный вакуум, созданный человеком, - менее 100000 молекул на кубический сантиметр. Считается, что впервые вакуум создал в ртутном БАРОМЕТРЕ Эванджелиста Торичелли. В 1650 г. немецкий физик Отто фон Герике (1602-86) изобрел первый вакуумный насос. Вакуум широко применяется в научных исследованиях и в промышленности. Пример такого применения - вакуумная упаковка продуктов питания. 22

В классической физике используется понятие о пустом пространстве, то есть о некоторой пространственной области, в которой отсутствуют частицы и поле. Такое пустое пространство можно считать синонимом вакуума классической физики. Вакуум в квантовой теории определяется как наинизшее энергетическое состояние, в котором отсутствуют все реальные частицы. При этом оказывается, что это состояние не есть состояние без поля. Небытие как отсутствие и частиц и поля невозможно. В вакууме происходят физические процессы с участием уже не реальных, а короткоживущих (виртуальных) квантов поля. В вакууме равны нулю только средние значения физических величин: напряженностей полей, числа электронов и т.д. Сами же эти величины непрерывно флуктуируют (колеблются) около этих средних значений. Причиной флуктуаций является квантово-механическое соотношение неопределенностей, согласно которому неопределенность в значении энергии тем больше, чем меньше время ее измерения. 23

Физический вакуум

В настоящее время в физике формируется принципиально новое направление научных исследований, связанное с изучением свойств и возможностей физического вакуума. Это научное направление становится доминирующим, и в прикладных аспектах способно привести к прорывным технологиям в области энергетики, электроники, экологии. 24

Чтобы понять роль и место вакуума в сложившейся картине мира попытаемся оценить, как соотносится в нашем мире материя вакуума и вещество.

В этом отношении интересны рассуждения Я.Б. Зельдовича. 25

«Вселенная огромна. Расстояние от Земли до Солнца составляет 150 миллионов километров. Расстояние от солнечной системы до центра Галактики в 2 млрд раз больше расстояния от Земли до Солнца. В свою очередь, размеры наблюдаемой Вселенной в миллион раз больше расстояния от Солнца до центра нашей Галактики. И все это огромное пространство заполнено невообразимо большим количеством вещества. 26

Масса Земли составляет более чем 5,97·10 27 г. Это такая большая величина, что ее трудно даже осознать. Масса Солнца в 333 тысячи раз больше. Только в наблюдаемой области Вселенной суммарная масса порядка десять в 22-й степени масс Солнца. Вся безбрежная огромность пространства и баснословное количество вещества в нем поражает воображение». 27

С другой стороны, атом, входящий в состав твердого тела, во много раз меньше любого известного нам предмета, но во много раз больше ядра, находящегося в центре атома. В ядре сконцентрировано почти все вещество атома. Если увеличить атом так, чтобы ядро стало иметь размеры макового зернышка, то размеры атома возрастут до нескольких десятков метров. На расстоянии десятков метров от ядра будут находиться многократно увеличенные электроны, которые все равно трудно разглядеть глазом, вследствие их малости. А между электронами и ядром останется огромное пространство не заполненное веществом. Но это не пустое пространство, а особый вид материи, которую физики назвали физическим вакуумом. 28

Само понятие «физический вакуум» появилось в науке как следствие осознания того, что вакуум не есть пустота, не есть «ничто». Он представляет собой чрезвычайно существенное «нечто», которое порождает все в мире, и задает свойства веществу, из которого построен окружающий мир. Оказывается, что даже внутри твердого и массивного предмета, вакуум занимает неизмеримо большее пространство, чем вещество. Таким образом, мы приходим к выводу, что вещество является редчайшим исключением в огромном пространстве, заполненном субстанцией вакуума. В газовой среде такая асимметрия еще больше выражена, не говоря уже о космосе, где наличие вещества является больше исключением, чем правилом. Видно, сколь ошеломляюще огромно количество материи вакуума во Вселенной в сравнении даже с баснословно большим количеством вещества в ней. В настоящее время ученым уже известно, что вещество своим происхождением обязано материальной субстанции вакуума и все свойства вещества задаются свойствами физического вакуума. 29

Наука все глубже проникает в сущность вакуума. Выявлена основополагающая роль вакуума в формировании законов вещественного мира. Уже не является удивительным утверждение некоторых ученых, что «все из вакуума и все вокруг нас – вакуум». Физика, сделав прорыв в описании сущности вакуума, заложила условие для практического его использования при решении многих проблем, в том числе, проблем энергетики и экологии. 30

По расчетам Нобелевского лауреата Р. Фейнмана и Дж. Уиллера, энергетический потенциал вакуума настолько огромен, что «в вакууме, заключенном в объеме обыкновенной электрической лампочки, энергии такое большое количество, что ее хватило бы, чтобы вскипятить все океаны на Земле». Однако, до сих пор традиционная схема получения энергии из вещества остается не только доминирующей, но даже считается единственно возможной. Под окружающей средой по-прежнему упорно продолжают понимать вещество, котороготак мало, забывая о вакууме, которого так много. Именно такой старый «вещественный» подход и привел к тому, что человечество буквально купаясь в энергии, испытывает энергетический голод. 31

В новом – «вакуумном» подходе исходят из того, что окружающее пространство – физический вакуум, является неотъемлемой частью системы энергопреобразования. При этом возможность получения вакуумной энергии находит естественное объяснение без отступления от физических законов. Открывается путь создания энергетических установок, имеющих избыточный энергобаланс, в которых полученная энергия превышает энергию, затраченную первичным источником питания. Энергетические установки с избыточным энергобалансом смогут открыть доступ к огромной энергии вакуума, запасенной самой Природой. 32

Что такое вакуум ? На этот вопрос обычно отвечают: "пространство с разреженным воздухом" или "пространство внутри сосуда, из которого выкачан воздух". Но всякая ли степень разрежения это вакуум и находиться ли вакуум в какой-либо связи с ?

Некоторые предпосылки к эмпирическому исследованию вакуума существовали ещё в античности. Древнегреческие механики создавали различные технические устройства, основанные на разрежении воздуха. Например, водяные насосы, действующие путём создания разрежения под поршнем, были известны ещё во времена Аристотеля. Эмпирическое изучение вакуума началось лишь в 17 веке, с концом Возрождения и началом научной революции Нового времени. К этому моменту уже давно было известно, что всасывающие насосы могут поднимать воду на высоту не более 10 метров.

На практике сильно разреженный газ называют техническим вакуумом. В макроскопических объёмах идеальный вакуум недостижим на практике, поскольку при конечной температуре все материалы обладают ненулевой плотностью насыщенных паров. Кроме того, многие материалы (в том числе толстые металлические, стеклянные и иные стенки сосудов) пропускают газы. В микроскопических объёмах, однако, достижение идеального вакуума в принципе возможно.

Строго говоря, техническим вакуумом называют газ в сосуде или трубопроводе с давлением ниже, чем в окружающей атмосфере. Обычно между атмосферным воздухом и высоковакуумным насосом стоит так называемый форвакуумный насос, создавая предварительное разрежение, поэтому низкий вакуум часто называют форвакуум. При дальнейшем понижении давления в камере увеличивается средняя длина свободного пробега молекул газа. При этом молекулы газа гораздо чаще сталкиваются со стенками, чем друг с другом. В этом случае говорят о высоком вакууме. Высокий вакуум в микроскопических порах некоторых кристаллов достигается уже при атмосферном давлении, поскольку диаметр поры гораздо меньше длины свободного пробега молекулы.

Космическое пространство имеет очень низкую плотность и давление, и является ближайшим приближением физического вакуума. Но космический вакуум не является действительно совершенным, даже в межзвёздном пространстве есть несколько атомов водорода на кубический сантиметр.

Действительно, предположим, что в баллоне воздух разрежен в 10000 раз по сравнению с плотностью его при нормальном атмосферном давлении, т. е. давление внутри баллона равно 0,076 мм. рт. ст.

Будет ли в баллоне вакуум? И можем ли мы продолжать считать, что в баллоне вакуум, если этот баллон поднят на высоту 100 км над поверхностью земли, где давление воздуха составляет всего 0,007 мм. рт. ст. Ведь в этом случае плотность воздуха внутри баллона станет в 10 раз больше, чем снаружи! Тогда, где же будет вакуум – внутри баллона или снаружи?

Современная физика связывает вакуум не с величиной давления вне или внутри сосуда, а с длиной свободного пробега молекул газа внутри него. Молекулы газов находятся в беспрерывном хаотическом тепловом движении; при комнатной температуре скорость теплового движения молекул воздуха равна примерно 450 м/с, т. е. приближается к скорости . Двигаясь во всех направлениях, молекулы постоянно сталкиваются друг с другом. Чем плотнее воздух, тем больше молекул заключается в единице объема и тем чаще молекулы сталкиваются.

Если воздух разредить, то молекулы будут сталкиваться менее часто. В среднем им придется пролетать больший путь между двумя столкновениями, который и называется длиной свободного пробега.

Вакуум с физической точки зрения – это такое разрежение, при котором длина свободного пробега в среднем больше размера сосуда. Когда в сосуде вакуум столкновения молекул будут редкими, большая часть молекул в своем движении от одной стенки сосуда до другой не встретится с другими молекулами.

Вакуум является хорошим термоизолятором; перенос тепловой энергии в нём происходит лишь за счёт теплового излучения, конвекция и теплопроводность исключены. Это свойство используется для теплоизоляции в термосах, состоящих из ёмкости с двойными стенками, пространство между которыми вакуумированно.

Похожие публикации