Двойные и кратные звёздные системы. Двойная звезда


Двойные звёзды (физические двойные)

- две звезды, объединённые силами тяготения и обращающиеся по эллиптическим (в частном случае - круговым) орбитам вокруг общего центра масс. Существуют также кратные физ. звёзды - тройные, четверные и т.д., но число их существенно меньше физ. Д. з. Если компоненты физ. Д. з. можно разглядеть непосредственно в телескоп или на фотографиях (получаемых для этой цели при помощи длиннофокусных астрографов), то её наз. визуально-двойной звездой. Тесные Д. з., двойственность к-рых не удаётся обнаружить даже в самые крупные телескопы, могут оказаться спектрально-двойными либо затменно-двойными (иначе - затменными переменными, см. ). Первые проявляют свою двойственность периодич. колебаниями или раздвоениями спектр. линий, вторые - периодич. изменениями суммарного блеска звёзд. В нек-рых случаях можно установить двойственность методами , или путём скоростной регистрации покрытий звёзд Луной (фотометрич. кривые изменения блеска одиночной и двойной звёзд оказываются различными). К Д. з. относят также: астрометрические Д.з., обладающие тёмными спутниками (среди близких к Солнцу звёзд обнаружено ок. 20 астрометрических Д. з.); звёзды со сложными спектрами (сочетаниями двух различных спектров); широкие пары - звёзды с большим общим собств. движением (т.е. с большим угловым перемещением звезды по небесной сфере, выражаемым в секундах дуги в год). В пространстве компоненты могут быть разделены десятками тысяч а.е., а периоды обращения могут достигать неск. млн. лет. Фотометрическими Д. з. иногда наз. также двойные (кратные) системы, кратность к-рых выявляется методами многоцветной фотометрии звёзд на основе сопоставления её на двухцветных (многоцветных) диаграммах (см. ).

Относит. число известных двойных (и кратных) звёзд неуклонно увеличивается; в настоящее время считают, что большая часть (возможно, больше 70%) звёзд объединена в системы большей или меньшей кратности; из числа известных Д. з. около 1/3 оказываются тройными или звёздами большей кратности. Известны шести- и семикратные звёзды.

Большой интерес представляют Д. з., в состав к-рых входят физ. переменные звёзды (напр., ), и, возможно, т.к. в этом случае удаётся оценить массы этих объектов.

При наблюдениях визуально-двойной звезды измеряют расстояние между компонентами и позиционный угол линии центров, иначе говоря, угол между направлением на северный полюс мира и направлением линии, соединяющей главную (более яркую) звезду с её спутником (рис. 1). Многолетние наблюдения могут обнаружить криволинейность траектории относительного движения спутника и дать возможность оценить периоды обращения.

Число открытых визуально-двойных звёзд (включая широкие пары) превышает 60 тыс. Из них лишь 10 тыс. измерялись более или менее регулярно. У более 500 из них уже обнаружена кривизна пути, достаточная для того, чтобы пытаться определить форму относит. орбиты. Примерно для 150 Д. з. определены орбиты, т.е. по видимой траектории движения спутника вокруг главной звезды вычислены элементы истинной орбиты, указывающие форму и размеры орбиты, её пространств. ориентацию. По этим данным можно предвычислить положения спутника на орбите (рис. 2). Лишь орбиты 80 Д. з. можно считать определёнными достаточно надёжно, чтобы по ним пытаться определить массы звёзд - компонентов двойных. Применение третьего закона Кеплера к движению Д. з. с известными расстояниями до них даёт возможность (почти единственную) определить массы звёзд (см. ).

Изменения смещений или раздвоений спектр. линий спектрально-двойных звёзд позволяют определить , являющуюся проекцией орбитальной скорости на луч зрения (рис. 3). Кривые лучевых скоростей (рис. 4) - одного компонента или обоих, если спутник не слишком отличается по блеску от главной звезды и в спектре видны и могут быть измерены линии обоих компонентов, - дают возможность вычислить элементы истинной орбиты (яркого компонента вокруг общего центра масс, либо более слабого компонента вокруг яркого, помещаемого в фокус относит. орбиты, либо, наконец, каждого компонента относительно центра масс системы, рис. 5). Определённые периоды спектрально-двойных звёзд заключены в пределах от 0,1084 сут ( Малой Медведицы) до 59,8 лет (визуально Д. з. Большой Медведицы). Подавляющее большинство спектрально-двойных звёзд имеет периоды порядка неск. сут. Всего открыто более 3000 спектрально-двойных звёзд, приблизительно для 1000 из них вычислены элементы орбит.

Кривая блеска затменной Д. з. показывает периодич. уменьшения блеска - одно или два за период и постоянный блеск между минимумами (у звёзд типа Алголя) либо непрерывное его изменение (у звёзд типа Лиры или W Большой Медведицы, в последнем случае минимумы почти одинаковой глубины, см. ). Число открытых затменных Д. з. превышает 5 тыс.


Рис. 4. Влияние формы и ориентации орбиты на форму
кривой лучевой скорости: 1 - круговая орбита;
2 - эксцентриситет орбиты е =- 0,5, долгота периастра ;
3 - эксцентриситет орбиты е =0,5, ;
а, б, с, d - положения звезды-спутника и
соответствующие им значения лучевой скорости.

Анализ кривых даёт возможность определить не только элементы орбиты затменной Д. з., но и нек-рые характеристики самих компонентов (форму, размеры, выраженные либо в долях большой полуоси орбиты, либо в километрах, если дополнительно имеются измерения лучевых скоростей). Высокая точность совр. фотоэлектрич. измерений блеска в ряде случаев даёт возможность выявить и учесть влияние на кривую блеска т.н. тонких эффектов, напр. потемнения к краю диска звезды, а также количественно выразить степень отклонения формы компонентов от шаровой для очень тесных двойных (типов Лиры и W Большой Медведицы). При заметной эксцентричности орбиты возможно обнаружение эффекта вращения линии апсид (т.е. линии, соединяющей периастр и апоастр, см. ), что может быть связано с существованием третьего, ещё не обнаруженного компонента системы, либо с заметным отличием формы звёзд от шаровой вследствие приливной деформации близких компонентов. Если один из компонентов затменной Д. з. - горячая звезда , а другой - сверхгигант, обладающий протяжённой атмосферой, то можно очень детально изучить строение и состав атмосферы сверхгиганта по изменениям в спектре затменной, когда сквозь атмосферу сверхгиганта во время затмения будет просвечивать горячая звезда. Линии поглощения будут изменяться по мере "погружения" горячей звезды в более плотные слои протяжённой атмосферы сверхгиганта. Примерами таких пар явл. Возничего (период 27 лет, из к-рых затмение длится ок. 2 лет!) и Возничего (период 972 сут, затмение длится ок. 40 сут).

Массу - одну из важнейших физических характеристик звезд - можно определить только по ее воздействию на движение других тел. Такими другими телами являются спутники некоторых звезд, обращающихся с ними вокруг общего центра масс.

Если посмотреть на гамму Б. Медведицы, вторую звезду с конца «ручки» ее «ковша», то при нормальном зрении вы увидите совсем близко от нее вторую слабую звездочку. Ее заметили еще древние арабы и назвали Алькор (Всадник). Яркой звезде они дали название Мицар. Их можно назвать двойной звездой. Мицар и Алькор отстоят друг от друга на 11". В бинокль таких звездных пар можно найти немало. Так, эпсилон Лиры состоит из двух одинаковых звезд 4-й звездной величины с расстоянием между ними 5".

Двойные звезды называются визуально-двойными, если их двойственность может быть замечена при непосредственных наблюдениях в телескоп (а в редких случаях и невооруженным глазом), эпсилонЛиры визуально-четверная звезда. Системы, состоящие из трех или более звезд, называются кратными.

Многие из визуально-двойных звезд оказываются оптически-двойными, т. е. близость таких двух звезд является результатом случайной проекции их на небо. В пространстве они_далеки друг от друга. В течение многолетних наблюдений можно убедиться, что одна из звезд проходит мимо другой по прямому направлению с постоянной скоростью.

Иногда постепенно выясняется, что более слабая звезда-спутник обращается вокруг более яркой звезды. Систематически меняются расстояния между ними и направление линии, их соединяющей. Такие звезды называются физическими двойными.

Самый короткий из известных периодов обращения визуально-двойных звезд - 5 лет. Изучены пары с периодами обращения в десятки лет, а пары с периодами в сотни лет изучат в будущем. Ближайшая к нам звезда a Центавра является двойной. Период обращения ее составляющих (компонентов)-70 лет. Обе звезды в этой паре по массе и температуре сходны с Солнцем.

Двойные звезды в телескоп нередко представляют собой красивое зрелище: главная звезда желтая или оранжевая, а спутник белый или голубой. Вообразите себе богатство красок на планете, обращающейся вокруг одной из пары звезд, где на небе сияет то красное Солнце, то голубое, то оба вместе.

Если луч нашего зрения лежит почти в плоскости орбиты спектрально-двойной звезды, то звезды такой пары будут поочередно загораживать друг друга. Во время затмений общий блеск пары, компонентов которой мы по отдельности не видим, будет ослабевать. В остальное же время в промежутках между затмениями он будет постоянным и тем дольше, чем короче длительность затмений и чем больше радиус орбиты. Если спутник большой и сам дает мало света, когда яркая звезда затмевает его, суммарный блеск системы будет уменьшаться мало.

Минимумы блеска затменно-двойных звезд происходят при движении их компонентов поперек луча зрения. Анализ кривой изменения блеска с течением времени позволяет установить размеры и яркость звезд, размеры орбиты, ее форму и наклон к лучу зрения, а также массы звезд. Таким образом, затменно- двойные звезды, наблюдаемые также и в качестве спектрально-двойных, являются наиболее хорошо изученными системами.

Затменно-двойные звезды называются еще алголями по названию синего типичного представителя бетты Персея. Древние арабы назвали его Алголем (испорченное эль гуль, что значит «дьявол»). Возможно, что они заметили его странное поведение: в течение 2 дн 11 ч блеск Алголя постоянен, затем за 5 часов он ослабевает от 2, 3 до 3, 5 звездной величины, а затем за 5 ч блеск его возвращается к прежнему значению.

Периоды известных спектрально-двойных звезд и алголей в основном короткие - около нескольких суток. В общей сложности двойственность звезд очень распространенное явление. До 30% звезд, вероятно, двойные.

Получение разнообразных данных об отдельных звездах и. их системах из анализа спектрально-двойных и затменно-двойных звезд можно назвать примерами «астрономии невидимого».

Двойные системы также классифицируются по способу наблюдения, можно выделить визуальные , спектральные , затменные , астрометрические двойные системы.

Визуально-двойные звёзды

Двойные звезды, которые возможно увидеть раздельно (или, как говорят, которые могут быть разрешены ), называются видимыми двойными , или визуально-двойными .

Возможность наблюдать звезду как визуально-двойную определяется разрешающей способностью телескопа, расстоянием до звёзд и расстоянием между ними. Таким образом, визуально-двойные звезды - это в основном звезды окрестностей Солнца с очень большим периодом обращения (следствие большого расстояния между компонентами). Из-за большого периода проследить орбиту двойной можно только по многочисленным наблюдениям на протяжении десятков лет. На сегодняшний день в каталогах WDS и CCDM свыше 78 000 и 110 000 объектов соответственно, и только у нескольких сотен из них можно вычислить орбиту. У менее чем сотни объектов орбита известна с достаточной точностью, чтобы получить массу компонентов.

При наблюдениях визуально-двойной звезды измеряют расстояние между компонентами и позиционный угол линии центров, иначе говоря, угол между направлением на северный полюс мира и направлением линии, соединяющей главную звезду с её спутником.

Спекл-интерферометрические двойные звезды

Спекл-интерферометрия эффективна для двойных с периодом в несколько десятков лет.

Астрометрические двойные звёзды

В случае визуально-двойных звёзд мы видим перемещение по небу сразу двух объектов. Однако, если представить себе, что один из двух компонентов нам не виден по тем или иным причинам, то двойственность всё равно можно обнаружить по изменению положения на небе второго. В таком случае говорят об астрометрически-двойных звёздах.

Если наличествуют высокоточные астрометрические наблюдения, то двойственность можно предположить, зафиксировав нелийность движения: первую производную собственного движения и вторую [прояснить ] . Астрометрические двойные звезды используются для измерения массы коричневых карликов разных спектральных классов .

Спектрально-двойные звёзды

Спектрально-двойной называют звезду, двойственность которой обнаруживается при помощи спектральных наблюдений. Для этого её наблюдают в течение нескольких ночей. Если оказывается, что линии её спектра периодически смещаются со временем, то это означает, что скорость источника меняется. Этому может быть множество причин: переменность самой звезды, наличие у неё плотной расширяющейся оболочки, образовавшейся после вспышки сверхновой , и т. п.

Если получен спектр второй компоненты, который показывает аналогичные смещения, но в противофазе, то можно с уверенностью говорить, что перед нами двойная система. Если первая звезда к нам приближается и её линии сдвинуты в фиолетовую сторону спектра, то вторая - удаляется, и её линии сдвинуты в красную сторону, и наоборот.

Но если вторая звезда сильно уступает по яркости первой, то мы имеем шанс её не увидеть, и тогда нужно рассмотреть другие возможные варианты. Главный признак двойной звезды - периодичность изменения лучевых скоростей и большая разница между максимальной и минимальной скоростью. Но, строго говоря, не исключено, что обнаружена экзопланета . Чтобы это выяснить, надо вычислить функцию масс , по которой можно судить о минимальной массе невидимого второго компонента и, соответственно, о том, чем он является - планетой, звездой или даже чёрной дырой .

Также по спектроскопическим данным, помимо масс компонентов, можно вычислить расстояние между ними, период обращения и эксцентриситет орбиты. Угол наклона орбиты к лучу зрения выяснить по этим данным невозможно. Поэтому о массе и расстоянии между компонентами можно говорить только как о вычисленных с точностью до угла наклона.

Как и для любого типа объектов, изучаемых астрономами, существуют каталоги спектрально-двойных звёзд. Самый известный и самый обширный из них - «SB9» (от англ. Spectral Binaries). По состоянию на 2013 год в нём 2839 объектов.

Затменно-двойные звёзды

Бывает, что орбитальная плоскость наклонена к лучу зрения под очень маленьким углом: орбиты звёзд такой системы расположены как бы ребром к нам. В такой системе звёзды будут периодически затмевать друг друга, то есть блеск пары будет меняться. Двойные звёзды, у которых наблюдаются такие затмения, называются затменно-двойными или затменно-переменными. Самой известной и первой открытой звездой такого типа является Алголь (Глаз Дьявола) в созвездии Персея .

Микролинзированные двойные

Если на луче зрения между звездой и наблюдателем находится тело с сильным гравитационным полем, то объект будет линзирован . Если бы поле было сильным, то наблюдались бы несколько изображений звезды, но в случае галактических объектов их поле не настолько сильное, чтобы наблюдатель смог различить несколько изображений, и в таком случае говорят о микролинзировании . В случае, если гравирующее тело - двойная звезда, кривая блеска, получаемая при прохождении её вдоль луча зрения, сильно отличается от случая одиночной звезды .

С помощью микролинзирования ищутся двойные звезды, где оба компонента - маломассивные коричневые карлики .

Явления и феномены, связанные с двойными звёздами

Парадокс Алголя

Этот парадокс сформулирован в середине 20 века советскими астрономами А. Г. Масевич и П. П. Паренаго , обратившими внимание на несоответствие масс компонентов Алголя и их эволюционной стадии. Согласно теории эволюции звёзд, скорость эволюции массивной звезды гораздо больше, чем у звезды с массой, сравнимой с солнечной, или немногим более. Очевидно, что компоненты двойной звезды образовались в одно и то же время, следовательно, массивный компонент должен проэволюционировать раньше, чем маломассивный. Однако в системе Алголя более массивный компонент был моложе.

Объяснение этого парадокса связано с феноменом перетекания масс в тесных двойных системах и впервые предложено американским астрофизиком Д. Кроуфордом. Если предположить, что в ходе эволюции у одного из компонентов появляется возможность переброса массы на соседа, то парадокс снимается .

Обмен массами между звёздами

Рассмотрим приближение тесной двойной системы (носящие имя приближения Роша ):

  1. Звезды считаются точечными массами и их собственным моментом осевого вращения можно пренебречь по сравнению с орбитальным
  2. Компоненты вращаются синхронно.
  3. Орбита круговая

Тогда для компонентов M 1 и M 2 с суммой больших полуосей a=a 1 +a 2 введем систему координат, синхронную с орбитальным вращением ТДС. Центр отсчета находится в центре звезды M 1 , ось X направлена от M 1 к M 2 , а ось Z - вдоль вектора вращения. Тогда запишем потенциал, связанный с гравитационными полями компонентов и центробежной силой :

Φ = − G M 1 r 1 − G M 2 r 2 − 1 2 ω 2 [ (x − μ a) 2 + y 2 ] {\displaystyle \Phi =-{\frac {GM_{1}}{r_{1}}}-{\frac {GM_{2}}{r_{2}}}-{\frac {1}{2}}\omega ^{2}\left[(x-\mu a)^{2}+y^{2}\right]} ,

где r 1 = √ x 2 +y 2 +z 2 , r 2 = √ (x-a) 2 +y 2 +z 2 , μ= M 2 /(M 1 +M 2) , а ω - частота вращения по орбите компонентов. Используя третий закон Кеплера , потенциал Роша можно переписать следующим образом:

Φ = − 1 2 ω 2 a 2 Ω R {\displaystyle \Phi =-{\frac {1}{2}}\omega ^{2}a^{2}\Omega _{R}} ,

где безразмерный потенциал:

Ω R = 2 (1 + q) (r 1 / a) + 2 (1 + q) (r 2 / a) + (x − μ a) 2 + y 2 a 2 {\displaystyle \Omega _{R}={\frac {2}{(1+q)(r_{1}/a)}}+{\frac {2}{(1+q)(r_{2}/a)}}+{\frac {(x-\mu a)^{2}+y^{2}}{a^{2}}}} ,

где q = M 2 /M 1

Эквипотенциали находятся из уравнения Φ(x,y,z)=const . Вблизи центров звёзд они мало отличаются от сферических, но по мере удаления отклонения от сферической симметрии становятся сильнее. В итоге обе поверхности смыкаются в точке Лагранжа L 1 . Это означает, что потенциальный барьер в этой точке равен 0, и частицы с поверхности звезды, находящие вблизи этой точки, способны перейти внутрь полости Роша соседней звезды, вследствие теплового хаотического движения .

Новые

Рентгеновские двойные

Симбиотические звёзды

Взаимодействующие двойные системы, состоящие из красного гиганта и белого карлика, окруженных общей туманностью. Для них характерны сложные спектры , где наряду с полосами поглощения (например, TiO) присутствуют эмиссионные линии, характерные для туманностей (ОIII, NeIII и т. п. Симбиотические звёзды являются переменными с периодами в несколько сотен дней, для них характерны новоподобные вспышки , во время которых их блеск увеличивается на две-три звёздных величины.

Симбиотические звёзды представляют собой относительно кратковременный, но чрезвычайно важный и богатый своими астрофизическими проявлениями этап в эволюции двойных звёздных систем умеренных масс с начальными периодами обращения 1-100 лет.

Барстеры

Сверхновые типа Ia

Происхождение и эволюция

Механизм формирования одиночной звезды изучен довольно хорошо - это сжатие молекулярного облака из-за гравитационной неустойчивости . Также удалось установить функцию распределения начальных масс . Очевидно, что сценарий формирования двойной звезды должен быть таким же, но с дополнительными модификациями. Также он должен объяснять следующие известные факты :

  1. Частота двойных. В среднем она составляет 50 %, но различна для звёзд разных спектральных классов. Для О-звёзд это порядка 70 %, для звёзд типа Солнца (спектральный класс G) это близко к 50 %, а для спектрального класса M около 30 %.
  2. Распределение периода.
  3. Эксцентриситет у двойных звёзд может принимать любое значение 0
  4. Соотношение масс. Распределение соотношения масс q= M 1 / M 2 является самым сложным для измерения, так как влияние эффектов селекции велико, но на данный момент считается, что распределение однородно и лежит в пределах 0.2

На данный момент нет окончательного понимания, какие именно надо вносить модификации, и какие факторы и механизмы играют здесь решающую роль. Все предложенные на данный момент теории можно поделить по тому, какой механизм формирования в них используется :

  1. Теории с промежуточным ядром
  2. Теории с промежуточным диском
  3. Динамические теории

Теории с промежуточным ядром

Самый многочисленный класс теорий. В них формирование идет за счёт быстрого или раннего разделение протооблака.

Самая ранняя из них считает, что в ходе коллапсирования из-за различного рода нестабильностей облако распадается на локальные джинсовские массы, растущие до тех пор, пока наименьшая из них перестанет быть оптически прозрачной и более не может эффективно охлаждаться. Но при этом расчетная функция масс звёзд не совпадает с наблюдаемой.

Ещё одна из ранних теорий предполагала размножение коллапсирующих ядер, вследствие деформации в различные эллиптические фигуры.

Современные же теории рассматриваемого типа считают, что основная причина фрагментации - рост внутренней энергии и энергии вращения по мере сжатия облака .

Теории с промежуточным диском

В теориях с динамическим диском образование происходит в ходе фрагментации протозвёздного диска, то есть гораздо позднее, чем в теориях с промежуточным ядром. Для этого необходим довольно массивный диск, восприимчивый к гравитационным нестабильностям, и газ которого эффективно охлаждается. Тогда могут возникнуть несколько компаньонов, лежащих в одной плоскости, которые аккрецируют газ из родительского диска.

В последнее время количество компьютерных расчетов подобных теорий сильно увеличилось. В рамках подобного подхода хорошо объясняется происхождение тесных двойных систем, а также иерархических систем различной кратности.

Динамические теории

Последний механизм предполагает, что двойные звезды образовались в ходе динамических процессов, спровоцированных соревновательной аккрецией. В данном сценарии предполагается, что молекулярное облако из-за различного рода турбуленций внутри него формирует сгустки приблизительно джинсовской массы. Эти сгустки, взаимодействуя между собой, соревнуются за вещество исходного облака. В таких условиях хорошо работает как уже упомянутая модель с промежуточным диском, так и иные механизмы, речь о которых пойдет ниже. Вдобавок динамическое трение протозвёзд с окружающим газом сближает компоненты.

В качестве одного из механизмов, работающего в данных условиях, предлагается комбинация фрагментации с промежуточным ядром и динамической гипотезы. Это позволяет воспроизвести частоту кратных звёзд в звёздных скоплениях. Однако на данный момент механизм фрагментации точно не описан.

Другой механизм предполагает рост сечения гравитационного взаимодействия у диска до тех пор, пока не будет захвачена близлежащая звезда. Хотя такой механизм вполне подходит для массивных звёзд, но совершенно не годится для маломассивных и вряд ли является доминирующим при образовании двойных звёзд .

Экзопланеты в двойных системах

Из более чем 800 ныне известных экзопланет число обращающихся вокруг одиночных звёзд значительно превышает число планет, найденных в звёздных системах разной кратности. По последним данным последних насчитывается 64 .

Экзопланеты в двойных системах принято разделять по конфигурациям их орбит :

  • Экзопланеты S-класса обращаются вокруг одного из компонентов (например OGLE-2013-BLG-0341LB b). Таковых 57.
  • К P-классу относят обращающихся вокруг обоих компонентов. Таковые обнаружены у NN Ser, DP Leo, HU Aqr, UZ For, Kepler-16 (AB)b, Kepler-34 (AB)b и Kepler-35 (AB)b.

Если попытаться провести статистику, то выяснится :

  1. Значительная часть планет обитают в системах, где компоненты разделены в пределах от 35 до 100 а. е., концентрируясь вокруг значения в 20 а. е.
  2. Планеты в широких системах (> 100 а. е.) имеют массу от 0,01 до 10 M J (почти как и для одиночных звёзд), в то время как массы планет для систем с меньшим разделением лежат от 0,1 до 10 M J
  3. Планеты в широких системах всегда одиночные
  4. Распределение эксцентриситетов орбиты отличается от одиночных, достигая значений e = 0,925 и e = 0,935.

Важные особенности процессов формирования

Обрезание протопланетного диска. В то время как у одиночных звёзд протопланетный диск может тянуться вплоть до пояса Койпера (30-50 а. е.), то в двойных звёзд его размер обрезается воздействием второго компонента. Таким образом протяжённость протопланетного диска в 2-5 раз меньше расстояния между компонентами.

Искривление протопланетного диска. Оставшийся после обрезания диск продолжает испытывать влияние второго компонента и начинает вытягиваться, деформироваться, сплетаться и даже разрываться. Также такой диск начинает прецессировать.

Сокращения время жизни протопланетного диска. Для широких двойных, как и для одиночных время жизни протопланетного диска составляет 1-10 млн лет, однако для систем с разделением < 40 а. е. время жизни диска должно находиться в пределах 0,1-1 млн лет.

Планетезимальный сценарий образования

Несовместные сценарии образования

Существуют сценарии, в которых изначальная, сразу после формирования, конфигурация планетной системы отличается от текущей и была достигнута в ходе дальнейшей эволюции.

  • Один из таких сценариев - захват планеты у другой звезды. Так как двойная звезда имеет гораздо больше сечения взаимодействия, то и вероятность столкновения и захват планеты у другой звезды существенно выше.
  • Второй сценарий предполагает, что в ходе эволюции одного из компонентов, уже на стадиях после главной последовательности в изначальной планетарной системе возникают нестабильности. В результате которых планета покидает изначальную орбиту и становится общей для обоих компонент.

Астрономические данные и их анализ

Кривые блеска

В случае, когда двойная звезда является затменной, то становится возможным построить зависимость интегрального блеска от времени. Переменность блеска на этой кривой будет зависеть от :

  1. Самих затмений
  2. Эффектов элипсоидальности.
  3. Эффектов отражения, а вернее переработки излучения одной звезды в атмосфере другой.

Однако анализ только самих затмений, когда компоненты сферически симметричны и отсутствуют эффекты отражения, сводится к решению следующей системы уравнений :

1 − l 1 (Δ) = ∬ S (Δ) I a (ξ) I c (ρ) d σ {\displaystyle 1-l_{1}(\Delta)=\iint \limits _{S(\Delta)}I_{a}(\xi)I_{c}(\rho)d\sigma }

1 − l 2 (Δ) = ∬ S (Δ) I c (ξ) I a (ρ) d σ {\displaystyle 1-l_{2}(\Delta)=\iint \limits _{S(\Delta)}I_{c}(\xi)I_{a}(\rho)d\sigma }

∫ 0 r ξ c I c (ξ) 2 π ξ d ξ + ∫ 0 r ρ c I c (ρ) 2 π ρ d ρ = 1 {\displaystyle \int \limits _{0}^{r_{\xi c}}I_{c}(\xi)2\pi \xi d\xi +\int \limits _{0}^{r_{\rho c}}I_{c}(\rho)2\pi \rho d\rho =1}

где ξ, ρ - полярные расстояния на диске первой и второй звезды, I a - функция поглощения излучения одной звезды атмосферой другой, I c - функция яркости площадок dσ у различных компонентов, Δ - область перекрытия, r ξc ,r ρc - полные радиусы первой и второй звезды.

Решение этой системы без априорных предположений невозможно. Ровно как и анализ более сложных случаев с элипсоидальной формой компонентов и эффектами отражения, существенных в различных вариантах тесных двойных систем. Поэтому все современные способы анализа кривых блеска тем или иным образом вводят модельные предположения, параметры которых находят путём другого рода наблюдений .

Кривые лучевых скоростей

Если двойная звезда наблюдается спектроскопически, то есть является спектроскопической двойной звездой, то можно построить зависимость изменения лучевых скоростей компонентов от времени. Если предположить, что орбита круговая, то можно записать следующее :

V s = V 0 s i n (i) = 2 π P a s i n (i) {\displaystyle V_{s}=V_{0}sin(i)={\frac {2\pi }{P}}asin(i)} ,

где V s - лучевая скорость компонента, i - наклонение орбиты к лучу зрения, P - период, a - радиус орбиты компонента. Теперь, если в эту формулу подставить третий закон Кеплера, имеем:

V s = 2 π P M s M s + M 2 s i n (i) {\displaystyle V_{s}={\frac {2\pi }{P}}{\frac {M_{s}}{M_{s}+M_{2}}}sin(i)} ,

где M s - масса исследуемого компонента, M 2 - масса второго компонента. Таким образом, наблюдая оба компонента можно определить соотношение масс звёзд, составляющих двойную. Если повторно использовать третий закон Кеплера, то последние приводится к следующему:

F (M 2) = P V s 1 2 π G {\displaystyle f(M_{2})={\frac {PV_{s1}}{2\pi G}}} ,

где G -гравитационная постоянна, а f(M 2) - функция масс звезды и по определению равна:

F (M 2) ≡ (M 2 s i n (i)) 3 (M 1 + M 2) 2 {\displaystyle f(M_{2})\equiv {\frac {(M_{2}sin(i))^{3}}{(M_{1}+M_{2})^{2}}}} .

В случае, если орбита не круговая, а имеет эксцентриситет, то можно показать, что для функции масса орбитальный период P должен быть домножен на фактор (1 − e 2) 3 / 2 {\displaystyle (1-e^{2})^{3/2}} .

Если второй компонент не наблюдается, то функция f(M 2) служит нижним пределом его массы.

Стоит отметить, что изучая только кривые лучевых скоростей невозможно определить все параметры двойной системы, всегда будет присутствовать неопределённость в виде неизвестного угла наклонения орбиты .

Определение масс компонентов

Практически всегда гравитационное взаимодействие между двумя звёздами описывается с достаточной точностью законами Ньютона и законами Кеплера , являющимися следствием законов Ньютона. Но для описания двойных пульсаров (см. пульсар Тейлора-Халса) приходится привлекать ОТО . Изучая наблюдательные проявления релятивистских эффектов, можно ещё раз проверить точность теории относительности.

Третий закон Кеплера связывает период обращения с расстоянием между компонентами и массой системы.

Двойными звездами в астрономии называют такие пары звезд, которые заметным образом выделяются на небе среди окружающих звезд фона близостью своих видимых положений. В качестве оценок близости видимых положений принимают следующие границы угловых расстояний r между компонентами пары, зависящие от видимой звездной величины m.

Типы двойных звезд

Двойные звезды подразделяют в зависимости от способа их наблюдений на визуально-двойные, фотометрические двойные, спектрально-двойные и спекл-интерферометрические двойные звезды.

Визуально-двойные звезды. Визуально-двойные звезды представляют собой довольно широкие пары, уже хорошо различимые при наблюдениях с телескопом умеренных размеров. Наблюдения визуально-двойных звезд производятся либо визуально с помощью телескопов, снабженных микрометром, либо фотографически с помощью телескопов-астрографов. Типичными представителями визуально-двойных звезд могут служить звезды? Девы (r=1? -6? , период обращения P=140 лет) или хорошо известная любителям астрономии близкая к Солнцу звезда 61 Лебедя (r=10? -35? , P P=350 лет). К настоящему времени известно около 100000 визуально-двойных звезд.

Фотометрические двойные звезды. Фотометрические двойные звезды представляют собой очень тесные пары, обращающиеся с периодом от нескольких часов до нескольких дней по орбитам, радиус которых сравним с размерами самих звезд. Плоскости орбит этих звезд и луч зрения наблюдателя практически совмещаются. Эти звезды обнаруживают по явлениям затмений, когда одна из компонент проходит впереди или сзади другой относительно наблюдателя. К настоящему времени известно более 500 фотометрических двойных звезд.

Спектрально-двойные звезды. Спектрально-двойные звезды, так же как и фотометрические двойные, представляют собой очень тесные пары, обращающиеся в плоскости, образующей с направлением луча зрения наблюдателя малый угол. Спектрально-двойные звезды, как правило, не удается разделить на компоненты даже при использовании телескопов с самыми большими диаметрами, однако принадлежность системы к этому типу двойных звезд легко обнаруживается при спектроскопических наблюдениях лучевых скоростей. Типичным представителем спектрально-двойных звезд может служить звезда? Большой Медведицы, у которой наблюдаются спектры обеих компонент, период колебаний 10 дней, амплитуда около 50 км/с.

Спекл-интерферометрические двойные звезды. Спекл-интерферометрические двойные звезды открыты сравнительно недавно, в 70-х годах нашего века, в результате использования современных больших телескопов для получения спекл-изображений некоторых ярких звезд. Пионерами спекл-интерферометрических наблюдений двойных звезд являются Э. Мак Алистер в США и Ю.Ю. Балега в России. К настоящему времени методами спекл-интерферометрии измерено несколько сотен двойных звезд с разрешением r ?,1.

Исследования двойных звезд

Долгое время считалось, что планетарные системы могут формироваться только вокруг единичных звезд, подобных Солнцу. Но в своей новой теоретической работе доктор Алан Босс (Alan Boss) из Отделения земного магнетизма (DTM) института Карнеги показал, что планеты могут быть и у множества других звезд - от пульсаров до белых карликов. В том числе и у двойных и даже тройных звездных систем, которые составляют две трети всех звездных систем в нашей Галактике. Обычно двойные звезды расположены на расстоянии 30 а.е. друг от друга - это приблизительно равно расстоянию от Солнца до планеты Нептун. В предыдущей теоретической работе д-р Босс высказывал предположение, что гравитационные силы между звездами-компаньонами будут препятствовать формированию планет вокруг каждой из них, сообщает Carnegie Institution. Однако охотники за планетами недавно обнаружили планеты-газовые гиганты, подобные Юпитеру, вокруг двойных звездных систем, что привело к пересмотру теории формирования планет у звездных систем.

01.06.2005 На конференции Американского астрономического общества астроном Тод Стромайер из Летно-космического центра им. Годдарда космического агентства NASA представил доклад о двойной звезде RX J0806.3+1527 (или сокращенно - J0806). Поведение этой пары звезд, которые относятся к классу белых карликов, явно указывает на то, что J0806 является одним из самых мощных источников гравитационных волн в нашей галактике Млечный Путь. Упомянутые звезды вращаются вокруг общего центра тяжести, причем расстояние между ними составляет всего лишь 80 тыс. км (это в пять раз меньше расстояния от Земли до Луны). Это самая маленькая орбита среди известных двойных звезд. Каждый из этих белых карликов по массе примерно вдвое легче Солнца, но по размерам они сходны с Землей. Скорость движения каждой звезды вокруг общего центра тяжести составляет более 1,5 млн. км/час. Причем, наблюдения показали, что яркость двойной звезды J0806 в оптическом и рентгеновском диапазоне длин волн меняется с периодом 321,5 секунды. Скорее всего, это и есть период орбитального вращения звезд, входящих в двойную систему, хотя нельзя исключать вероятность того, что упомянутая периодичность является следствием вращения вокруг собственной оси одного из белых карликов. Еще следует отметить, что каждый год период изменения яркости J0806 уменьшается на 1,2 мс.

Характерные приметы двойных звезд

Центавра состоит из двух звезд - a Центавра А и a Центавра В. а Центавра А имеет параметры, почти аналогичные параметрам Солнца: Спектральный класс G, температура около 6000 K и такую же массу и плотность. a Центавра В имеет массу на 15% меньше, спектральный класс K5, температуру 4000 K, диаметр 3/4 солнечного, эксцентриситет (степень вытянутости эллипса, равная отношению расстояния от фокуса до центра к длине большей полуоси, т.е. эксцентриситет окружности равен 0 – 0,51). Период обращения – 78,8 года, большая полуось – 23,3 а. е., плоскость орбиты наклонена к лучу зрения под углом 11, центр тяжести системы приближается к нам со скоростью 22 км/c , поперечная скорость 23 км/c, т.е. общая скорость направлена к нам под углом 45o и составляет 31 км/c. Сириус, как и a Центавра, тоже состоит из двух звезд – А и В, однако в отличие от неё обе звезды имеют спектральный класс A (A-A0, B-A7) и, следовательно, значительно большую температуру (A-10000 K, B- 8000 K). Масса Сириуса А – 2,5Mсолнца, Сириуса В – 0,96Mсолнца. Следовательно, поверхности одинаковой площади излучают у этих звезд одинаковое кол-во энергии, но по светимости спутник в 10 000 раз слабее, чем Сириус. Значит, его радиус меньше в 100 раз, т.е. он почти такой же, как Земля. Между тем масса у него почти такая же, как и у Солнца. Следовательно, белый карлик имеет огромную плотность - около 10 59 0 кг/м 53 0.

Двойные системы также классифицируются по способу наблюдения, можно выделить визуальные , спектральные , затменные , астрометрические двойные системы.

Визуально-двойные звёзды

Двойные звезды, которые возможно увидеть раздельно (или, как говорят, которые могут быть разрешены ), называются видимыми двойными , или визуально-двойными .

Возможность наблюдать звезду как визуально-двойную определяется разрешающей способностью телескопа, расстоянием до звёзд и расстоянием между ними. Таким образом, визуально-двойные звезды - это в основном звезды окрестностей Солнца с очень большим периодом обращения (следствие большого расстояния между компонентами). Из-за большого периода проследить орбиту двойной можно только по многочисленным наблюдениям на протяжении десятков лет. На сегодняшний день в каталогах WDS и CCDM свыше 78 000 и 110 000 объектов соответственно, и только у нескольких сотен из них можно вычислить орбиту. У менее чем сотни объектов орбита известна с достаточной точностью, чтобы получить массу компонентов.

При наблюдениях визуально-двойной звезды измеряют расстояние между компонентами и позиционный угол линии центров, иначе говоря, угол между направлением на северный полюс мира и направлением линии, соединяющей главную звезду с её спутником.

Спекл-интерферометрические двойные звезды

Спекл-интерферометрия эффективна для двойных с периодом в несколько десятков лет.

Астрометрические двойные звёзды

В случае визуально-двойных звёзд мы видим перемещение по небу сразу двух объектов. Однако, если представить себе, что один из двух компонентов нам не виден по тем или иным причинам, то двойственность все равно можно обнаружить по изменению положения на небе второго. В таком случае говорят об астрометрически-двойных звёздах.

Если наличествуют высокоточные астрометрические наблюдения, то двойственность можно предположить, зафиксировав нелийность движения: первую производную собственного движения и вторую [прояснить ] . Астрометрические двойные звезды используются для измерения массы коричневых карликов разных спектральных классов .

Спектрально-двойные звёзды

Спектрально-двойной называют звезду, двойственность которой обнаруживается при помощи спектральных наблюдений. Для этого её наблюдают в течение нескольких ночей. Если оказывается, что линии её спектра периодически смещаются со временем, то это означает, что скорость источника меняется. Этому может быть множество причин: переменность самой звезды, наличие у неё плотной расширяющейся оболочки, образовавшейся после вспышки сверхновой , и т. п.

Если получен спектр второй компоненты, который показывает аналогичные смещения, но в противофазе, то можно с уверенностью говорить, что перед нами двойная система. Если первая звезда к нам приближается и её линии сдвинуты в фиолетовую сторону спектра, то вторая - удаляется, и её линии сдвинуты в красную сторону, и наоборот.

Но если вторая звезда сильно уступает по яркости первой, то мы имеем шанс её не увидеть, и тогда нужно рассмотреть другие возможные варианты. Главный признак двойной звезды - периодичность изменения лучевых скоростей и большая разница между максимальной и минимальной скоростью. Но, строго говоря, не исключено, что обнаружена экзопланета . Чтобы это выяснить, надо вычислить функцию масс , по которой можно судить о минимальной массе невидимого второго компонента и, соответственно, о том, чем он является - планетой, звездой или даже чёрной дырой .

Также по спектроскопическим данным, помимо масс компонентов, можно вычислить расстояние между ними, период обращения и эксцентриситет орбиты. Угол наклона орбиты к лучу зрения выяснить по этим данным невозможно. Поэтому о массе и расстоянии между компонентами можно говорить только как о вычисленных с точностью до угла наклона.

Как и для любого типа объектов, изучаемых астрономами, существуют каталоги спектрально-двойных звёзд. Самый известный и самый обширный из них - «SB9» (от англ. Spectral Binaries). На данный момент [когда? ] в нём 2839 объектов.

Затменно-двойные звёзды

Бывает, что орбитальная плоскость наклонена к лучу зрения под очень маленьким углом: орбиты звёзд такой системы расположены как бы ребром к нам. В такой системе звёзды будут периодически затмевать друг друга, то есть блеск пары будет меняться. Двойные звёзды, у которых наблюдаются такие затмения, называются затменно-двойными или затменно-переменными. Самой известной и первой открытой звездой такого типа является Алголь (Глаз Дьявола) в созвездии Персея .

Микролинзированные двойные

Если на луче зрения между звездой и наблюдателем находится тело с сильным гравитационным полем, то объект будет линзирован . Если бы поле было сильным, то наблюдались бы несколько изображений звезды, но в случае галактических объектов их поле не настолько сильное, чтобы наблюдатель смог различить несколько изображений, и в таком случае говорят о микролинзировании . В случае, если гравирующее тело - двойная звезда, кривая блеска, получаемая при прохождении её вдоль луча зрения, сильно отличается от случая одиночной звезды .

С помощью микролинзирования ищутся двойные звезды, где оба компонента - маломассивные коричневые карлики .

Явления и феномены, связанные с двойными звёздами

Парадокс Алголя

Этот парадокс сформулирован в середине 20 века советскими астрономами А. Г. Масевич и П. П. Паренаго , обратившими внимание на несоответствие масс компонентов Алголя и их эволюционной стадии. Согласно теории эволюции звёзд, скорость эволюции массивной звезды гораздо больше, чем у звезды с массой, сравнимой с солнечной, или немногим более. Очевидно, что компоненты двойной звезды образовались в одно и то же время, следовательно, массивный компонент должен проэволюционировать раньше, чем маломассивный. Однако в системе Алголя более массивный компонент был моложе.

Объяснение этого парадокса связано с феноменом перетекания масс в тесных двойных системах и впервые предложено американским астрофизиком Д. Кроуфордом. Если предположить, что в ходе эволюции у одного из компонентов появляется возможность переброса массы на соседа, то парадокс снимается .

Обмен массами между звёздами

Рассмотрим приближение тесной двойной системы (носящие имя приближения Роша ):

  1. Звезды считаются точечными массами и их собственным моментом осевого вращения можно пренебречь по сравнению с орбитальным
  2. Компоненты вращаются синхронно.
  3. Орбита круговая

Тогда для компонентов M 1 и M 2 с суммой больших полуосей a=a 1 +a 2 введем систему координат, синхронную с орбитальным вращением ТДС. Центр отсчета находится в центре звезды M 1 , ось X направлена от M 1 к M 2 , а ось Z - вдоль вектора вращения. Тогда запишем потенциал, связанный с гравитационными полями компонентов и центробежной силой :

Φ = − G M 1 r 1 − G M 2 r 2 − 1 2 ω 2 [ (x − μ a) 2 + y 2 ] {\displaystyle \Phi =-{\frac {GM_{1}}{r_{1}}}-{\frac {GM_{2}}{r_{2}}}-{\frac {1}{2}}\omega ^{2}\left[(x-\mu a)^{2}+y^{2}\right]} ,

где r 1 = √ x 2 +y 2 +z 2 , r 2 = √ (x-a) 2 +y 2 +z 2 , μ= M 2 /(M 1 +M 2) , а ω - частота вращения по орбите компонентов. Используя третий закон Кеплера , потенциал Роша можно переписать следующим образом:

Φ = − 1 2 ω 2 a 2 Ω R {\displaystyle \Phi =-{\frac {1}{2}}\omega ^{2}a^{2}\Omega _{R}} ,

где безразмерный потенциал:

Ω R = 2 (1 + q) (r 1 / a) + 2 (1 + q) (r 2 / a) + (x − μ a) 2 + y 2 a 2 {\displaystyle \Omega _{R}={\frac {2}{(1+q)(r_{1}/a)}}+{\frac {2}{(1+q)(r_{2}/a)}}+{\frac {(x-\mu a)^{2}+y^{2}}{a^{2}}}} ,

где q = M 2 /M 1

Эквипотенциали находятся из уравнения Φ(x,y,z)=const . Вблизи центров звёзд они мало отличаются от сферических, но по мере удаления отклонения от сферической симметрии становятся сильнее. В итоге обе поверхности смыкаются в точке Лагранжа L 1 . Это означает, что потенциальный барьер в этой точке равен 0, и частицы с поверхности звезды, находящие вблизи этой точки, способны перейти внутрь полости Роша соседней звезды, вследствие теплового хаотического движения .

Новые

Рентгеновские двойные

Симбиотические звезды

Взаимодействующие двойные системы, состоящие из красного гиганта и белого карлика, окруженных общей туманностью. Для них характерны сложные спектры , где наряду с полосами поглощения (например, TiO) присутствуют эмиссионные линии, характерные для туманностей (ОIII, NeIII и т. п. Симбиотические звёзды являются переменными с периодами в несколько сотен дней, для них характерны новоподобные вспышки , во время которых их блеск увеличивается на две-три звёздных величины.

Симбиотические звёзды представляют собой относительно кратковременный, но чрезвычайно важный и богатый своими астрофизическими проявлениями этап в эволюции двойных звёздных систем умеренных масс с начальными периодами обращения 1-100 лет.

Барстеры

Сверхновые типа Ia

Происхождение и эволюция

Механизм формирования одиночной звезды изучен довольно хорошо - это сжатие молекулярного облака из-за гравитационной неустойчивости . Также удалось установить функцию распределения начальных масс . Очевидно, что сценарий формирования двойной звезды должен быть таким же, но с дополнительными модификациями. Также он должен объяснять следующие известные факты :

  1. Частота двойных. В среднем она составляет 50 %, но различна для звёзд разных спектральных классов. Для О-звёзд это порядка 70 %, для звёзд типа Солнца (спектральный класс G) это близко к 50 %, а для спектрального класса M около 30 %.
  2. Распределение периода.
  3. Эксцентриситет у двойных звёзд может принимать любое значение 0
  4. Соотношение масс. Распределение соотношения масс q= M 1 / M 2 является самым сложным для измерения, так как влияние эффектов селекции велико, но на данный момент считается, что распределение однородно и лежит в пределах 0.2

На данный момент нет окончательного понимания, какие именно надо вносить модификации, и какие факторы и механизмы играют здесь решающую роль. Все предложенные на данный момент теории можно поделить по тому, какой механизм формирования в них используется :

  1. Теории с промежуточным ядром
  2. Теории с промежуточным диском
  3. Динамические теории

Теории с промежуточным ядром

Самый многочисленный класс теорий. В них формирование идет за счёт быстрого или раннего разделение протооблака.

Самая ранняя из них считает, что в ходе коллапсирования из-за различного рода нестабильностей облако распадается на локальные джинсовские массы, растущие до тех пор, пока наименьшая из них перестанет быть оптически прозрачной и более не может эффективно охлаждаться. Но при этом расчетная функция масс звёзд не совпадает с наблюдаемой.

Ещё одна из ранних теорий предполагала размножение коллапсирующих ядер, вследствие деформации в различные эллиптические фигуры.

Современные же теории рассматриваемого типа считают, что основная причина фрагментации - рост внутренней энергии и энергии вращения по мере сжатия облака .

Теории с промежуточным диском

В теориях с динамическим диском образование происходит в ходе фрагментации протозвёздного диска, то есть гораздо позднее, чем в теориях с промежуточным ядром. Для этого необходим довольно массивный диск, восприимчивый к гравитационным нестабильностям, и газ которого эффективно охлаждается. Тогда могут возникнуть несколько компаньонов, лежащих в одной плоскости, которые аккрецируют газ из родительского диска.

В последнее время количество компьютерных расчетов подобных теорий сильно увеличилось. В рамках подобного подхода хорошо объясняется происхождение тесных двойных систем, а также иерархических систем различной кратности.

Динамические теории

Последний механизм предполагает, что двойные звезды образовались в ходе динамических процессов, спровоцированных соревновательной аккрецией. В данном сценарии предполагается, что молекулярное облако из-за различного рода турбуленций внутри него формирует сгустки приблизительно джинсовской массы. Эти сгустки, взаимодействуя между собой, соревнуются за вещество исходного облака. В таких условиях хорошо работает как уже упомянутая модель с промежуточным диском, так и иные механизмы, речь о которых пойдет ниже. Вдобавок динамическое трение протозвёзд с окружающим газом сближает компоненты.

В качестве одного из механизмов, работающего в данных условиях, предлагается комбинация фрагментации с промежуточным ядром и динамической гипотезы. Это позволяет воспроизвести частоту кратных звёзд в звёздных скоплениях. Однако на данный момент механизм фрагментации точно не описан.

Другой механизм предполагает рост сечения гравитационного взаимодействия у диска до тех пор, пока не будет захвачена близлежащая звезда. Хотя такой механизм вполне подходит для массивных звёзд, но совершенно не годится для маломассивных и вряд ли является доминирующим при образовании двойных звёзд .

Экзопланеты в двойных системах

Из более чем 800 ныне известных экзопланет число обращающихся вокруг одиночных звёзд значительно превышает число планет найденных в звёздных системах разной кратности. По последним данным последних насчитывается 64 .

Экзопланеты в двойных системах принято разделять по конфигурациям их орбит :

  • Экзопланеты S-класса обращаются вокруг одного из компонентов (например OGLE-2013-BLG-0341LB b). Таковых 57.
  • К P-классу относят обращающихся вокруг обоих компонентов. Таковые обнаружены у NN Ser, DP Leo, HU Aqr, UZ For, Kepler-16 (AB)b, Kepler-34 (AB)b и Kepler-35 (AB)b.

Если попытаться провести статистику, то выяснится :

  1. Значительная часть планет обитают в системах, где компоненты разделены в пределах от 35 до 100 а. е., концентрируясь вокруг значения в 20 а. е.
  2. Планеты в широких системах (> 100 а. е.) имеют массу от 0,01 до 10 M J (почти как и для одиночных звёзд), в то время как массы планет для систем с меньшим разделением лежат от 0,1 до 10 M J
  3. Планеты в широких системах всегда одиночные
  4. Распределение эксцентриситетов орбиты отличается от одиночных, достигая значений e = 0,925 и e = 0,935.

Важные особенности процессов формирования

Обрезание протопланетного диска. В то время как у одиночных звёзд протопланетный диск может тянуться вплоть до пояса Койпера (30-50 а. е.), то в двойных звёзд его размер обрезается воздействием второго компонента. Таким образом протяжённость протопланетного диска в 2-5 раз меньше расстояния между компонентами.

Искривление протопланетного диска. Оставшийся после обрезания диск продолжает испытывать влияние второго компонента и начинает вытягиваться, деформироваться, сплетаться и даже разрываться. Также такой диск начинает прецессировать.

Сокращения время жизни протопланетного диска Для широких двойных, как и для одиночных время жизни протопланетного диска составляет 1-10 млн лет. Одна для систем с разделением < 40 а. е. Время жизни диска должно составлять в пределах 0,1-1 млн лет.

Планетозимальный сценарий образования

Несовместные сценарии образования

Существуют сценарии в которых изначальная, сразу после формирования, конфигурация планетной системы отличается от текущей и была достигнута в ходе дальнейшей эволюции.

  • Один из таких сценариев - захват планеты у другой звезды. Так как двойная звезда имеет гораздо больше сечения взаимодействия, то и вероятность столкновения и захват планеты у другой звезды существенно выше.
  • Второй сценарий предполагает, что в ходе эволюции одного из компонентов, уже на стадиях после главной последовательности в изначальной планетарной системе возникают нестабильности. В результате которых планета покидает изначальную орбиту и становится общей для обоих компонент.

Астрономические данные и их анализ

Кривые блеска

В случае, когда двойная звезда является затменной, то становится возможным построить зависимость интегрального блеска от времени. Переменность блеска на этой кривой будет зависеть от :

  1. Самих затмений
  2. Эффектов элипсоидальности.
  3. Эффектов отражения, а вернее переработки излучения одной звезды в атмосфере другой.

Однако анализ только самих затмений, когда компоненты сферически симметричны и отсутствуют эффекты отражения, сводится к решению следующей системы уравнений :

1 − l 1 (Δ) = ∬ S (Δ) I a (ξ) I c (ρ) d σ {\displaystyle 1-l_{1}(\Delta)=\iint \limits _{S(\Delta)}I_{a}(\xi)I_{c}(\rho)d\sigma }

1 − l 2 (Δ) = ∬ S (Δ) I c (ξ) I a (ρ) d σ {\displaystyle 1-l_{2}(\Delta)=\iint \limits _{S(\Delta)}I_{c}(\xi)I_{a}(\rho)d\sigma }

∫ 0 r ξ c I c (ξ) 2 π ξ d ξ + ∫ 0 r ρ c I c (ρ) 2 π ρ d ρ = 1 {\displaystyle \int \limits _{0}^{r_{\xi c}}I_{c}(\xi)2\pi \xi d\xi +\int \limits _{0}^{r_{\rho c}}I_{c}(\rho)2\pi \rho d\rho =1}

где ξ, ρ - полярные расстояния на диске первой и второй звезды, I a - функция поглощения излучения одной звезды атмосферой другой, I c - функция яркости площадок dσ у различных компонентов, Δ - область перекрытия, r ξc ,r ρc - полные радиусы первой и второй звезды.

Решение этой системы без априорных предположений невозможно. Ровно как и анализ более сложных случаев с элипсоидальной формой компонентов и эффектами отражения, существенных в различных вариантах тесных двойных систем. Поэтому все современные способы анализа кривых блеска тем или иным образом вводят модельные предположения, параметры которых находят путём другого рода наблюдений .

Кривые лучевых скоростей

Если двойная звезда наблюдается спектроскопически, то есть является спектроскопической двойной звездой, то можно построить зависимость изменения лучевых скоростей компонентов от времени. Если предположить, что орбита круговая, то можно записать следующее :

V s = V 0 s i n (i) = 2 π P a s i n (i) {\displaystyle V_{s}=V_{0}sin(i)={\frac {2\pi }{P}}asin(i)} ,

где V s - лучевая скорость компонента, i - наклонение орбиты к лучу зрения, P - период, a - радиус орбиты компонента. Теперь, если в эту формулу подставить третий закон Кеплера, имеем:

V s = 2 π P M s M s + M 2 s i n (i) {\displaystyle V_{s}={\frac {2\pi }{P}}{\frac {M_{s}}{M_{s}+M_{2}}}sin(i)} ,

где M s - масса исследуемого компонента, M 2 - масса второго компонента. Таким образом, наблюдая оба компонента можно определить соотношение масс звёзд, составляющих двойную. Если повторно использовать третий закон Кеплера, то последние приводится к следующему:

F (M 2) = P V s 1 2 π G {\displaystyle f(M_{2})={\frac {PV_{s1}}{2\pi G}}} ,

где G -гравитационная постоянна, а f(M 2) - функция масс звезды и по определению равна:

F (M 2) ≡ (M 2 s i n (i)) 3 (M 1 + M 2) 2 {\displaystyle f(M_{2})\equiv {\frac {(M_{2}sin(i))^{3}}{(M_{1}+M_{2})^{2}}}} .

В случае, если орбита не круговая, а имеет эксцентриситет, то можно показать, что для функции масса орбитальный период P должен быть домножен на фактор (1 − e 2) 3 / 2 {\displaystyle (1-e^{2})^{3/2}} .

Если второй компонент не наблюдается, то функция f(M 2) служит нижним пределом его массы.

Стоит отметить, что изучая только кривые лучевых скоростей невозможно определить все параметры двойной системы, всегда будет присутствовать неопределённость в виде неизвестного угла наклонения орбиты .

Определение масс компонентов

Практически всегда гравитационное взаимодействие между двумя звёздами описывается с достаточной точностью законами Ньютона и законами Кеплера , являющимися следствием законов Ньютона. Но для описания двойных пульсаров (см. пульсар Тейлора-Халса) приходится привлекать ОТО . Изучая наблюдательные проявления релятивистских эффектов, можно ещё раз проверить точность теории относительности.

Третий закон Кеплера связывает период обращения с расстоянием между компонентами и массой системы:

P = 2 π a 3 G (M 1 + M 2) {\displaystyle P=2\pi {\sqrt {\frac {a^{3}}{G(M_{1}+M_{2})}}}} ,

где P {\displaystyle P} - период обращения, a {\displaystyle a} - большая полуось системы, M 1 {\displaystyle M_{1}} и M 2 {\displaystyle M_{2}} - массы компонентов, G {\displaystyle G} -

Похожие публикации